

COLLEGE OF ENGINEERING, PUNE

(An Autonomous Institute of Government of Maharashtra.) SHIVAJI NAGAR, PUNE - 411 005

END Semester Examination

(AS-205) Foundation of physics

Course: B.Tech	Branch: Applied Science		
Semester: Sem III	9		
		Max.Marks:60	
Year: 2014-2015		Date: 0 2 DEC 2014	
Duration: 3 hour		Time: 10 to 1.00 pm	
Instructions:	MIS No.		
3. Writing anything on	programmable calculators question paper is not allow f anything like stationery, a if necessary.	wed.	
O.1 Answer any five of	the following (3 MARKS EAC	(H)	
	'dual nature of matter'.		
B) State any three prope	rties of central forces.		
C) Write a short note on 'wave front of a light wave'			
D) State and explain firs	t law of thermodynamics.		
E) Define Electric intens	sity 'E' in terms of Electric poten	itial 'V'	
F) Discuss the physical s	significance of a wave fuction Ψ	•	

Q.2 Answer any *five* of the following (4 Marks Each)

- **A)** Prove that if two exactly identical travelling waves in opposite direction interfere to each other, the resultant wave is stationary wave.
- B) If $y_1 = A \cos(kx \omega t)$ and $y_2 = A \cos(kx \omega t + \emptyset)$ use superposition principle to find resultant of y1 and y2 and find its value for it for $\emptyset = 0 \& \emptyset = \pi$.

lain Print

- C) Prove that gravitational force between two objects with masses $m_1 \& m_2$ and with distance of separation 'r' is central in nature.
- **D)** Find the electrostatic potential corresponding to electrostatics field $E = A e^{-kr}\hat{r}$
- E) Explain with suitable diagram the magnetic monopole does not exists.
- **F)** Explain Reversible and irreversible processes with suitable examples.
- Q.3 Answer any five of the following (5 MARKS EACH)
- A) An infinite plane carries a uniform surface charge σ find it's Electric field E.
- B) Find the magnetic field at distance 's' from a lond straight wire carrying a steady current 'I' using Biot-Savart's law.
- C) Find the magnetic field at the centre of square loop which carries a steady current 'I'.Let 'R' be the distance from centre to the side.
- **D)** Calculate the increase in entropy when 1 g of ice at -10°C is converted in to water at 0°C. (Specific heat of ice =0.5; latent heat of ice δQ =80 cal/g)
- **E)** A Force $F = (10x + \ln x)$ acts on a particle in the direction at 30° to the positive X direction; where F is in the newtons and X is in meter. Find the work done by this force during a displacement from X = 1 to X = 2 m.
- F) Find De-broglie wavelength of an electron accelarated through potential difference of 1000 volts.

(mass of eletron $m_e = 9.1 \times 10^{-21} kg$, planck's conditant $h = 6.62 \times 10^{-24} j \cdot 5$ charge on electron $e = 1.6 \times 10^{-19} C$)