

COLLEGE OF ENGINEERING, PUNE

(An Autonomous Institute of Government of Maharashtra.) SHIVAJI NAGAR, PUNE - 411 005

END Semester Examination

(ET-207)**Network Synthesis and Analog Filters**

Course: B.Tech

Branch: Electronics and TeleCommunication Engineering

Semester: Sem III

Year: 2014-2015 Max.Marks:60

Date: /12/2014

Duration: 3 Hours **Instructions:** Time:- 10 to 1.00 pm MIS No.

- 1. Figures to the right indicate the full marks.
- 2. Mobile phones and programmable calculators are strictly prohibited.
- 3. Writing anything on question paper is not allowed.
- 4. Exchange/Sharing of anything like stationery, calculator is not allowed.
- 5. Assume suitable data if necessary.
- 6. Write your MIS Number on Question Paper
- Q 1 (a) For the network in the figure, show that the driving point impedance Z_{in} is equal to 4 R when Z_a , $Z_b = R^2$

(b) (i) The network N is terminated at port 2-2' with an impedance $Z_L = \frac{1}{V_L}$. Show

(ii) What do you mean by reciprocal and symmetrical networks. Explain by appropriate examples.

Show the response of Chebyshev Low pass Filter for N=1,N=2, N=3. Which filter approximation according to you should be preferred and why?

- (c) Explain with the help of a diagram, ANY FOUR of the following parameters of a 4 practical Low pass Filter.
 - (i) Cut off Frequency
 - (ii) Stop Band Frequency
 - (iii) Pass band Ripple(δ_p)
 - (iv) Stop Band Ripple(δ_s)
 - (v) Gain roll-off

OR

Justify the necessity of using a higher order filter (with appropriate diagrams of N=2,3... for Butterworth LPF). Obtain the transfer function of a 3^{rd} order normalized Butterworth filter and plot the poles on the S-plane.

Q 2 (a) (i) Let a Network Function

$$Z(s) = \frac{a_n s^n + a_{n-1} s^{n-1} + a_{n-2} s^{n-2} + \dots + a_1 s + a_0}{b_m s^m + b_{m-1} s^{m-1} + b_{m-2} s^{m-2} + \dots + b_1 s + b_0} = \frac{P(s)}{Q(s)}$$

Explain the basic operation of Removal of a pole at $s = \infty$ from the function.

3

(ii) What do you mean by critical frequencies? State their significance.

<u>OR</u>

(ii)Find whether the following is RC impedance function. If yes, synthesize it in Foster 1 form.

$$Z(s) = \frac{3(s+1)(s+4)}{(s+3)}$$

Realize the driving point function $Z(s) = \frac{s^2 + 2s + 2}{s^2 + s + 1}$ into the form shown below: $Z(s) = \frac{s^2 + 2s + 2}{s^2 + s + 1}$

(c) What do you mean by a Constant resistance Network. Give a condition for a bridge network to be a Constant Resistance Network.

Derive the Open Circuit (z) parameters for the Bridge / Lattice network shown below.

4

- (i) Maximum Passband Ripple $(\delta_p) = 1 \text{ dB}$
- (ii) $\Omega_p = 1.2 \text{ rad/s}$
- (iii) Stop band Attenuation (δ_s) is 40dB for Ω_s = 4 rad/s.
- Q 3 (a) Synthesize the following into L-C ladder network with 1Ω termination

$$Z_{21} = \frac{2}{s^3 + s^2 + 4s + 2}$$

(b) State the advantages of Active Filters over Passive Filters. The Frequency Response 5 of two Bandpass Filters is shown below. Is it possible to design the filters with the given specifications? If not, suggest appropriate changes in the specification/s so that

Synthesize $\frac{V_2}{V_1} = \frac{(s+2)(s+4)}{(s+3)(3s+4)}$ as a constant resistance bridged T-network connected in Cascade.

500HZ 4KHZ

(ii)Convert the LPF below into Band Stop Filter with Bandwidth $B = 6 \times 10^4$ rad/s and centre Frequency $\Omega_0 = 4 \times 10^4$ rad/s.

Q 4 (a) A certain low pass filter has already been designed with its magnitude characteristic 5 $|H_{LP}(j\Omega)|$ as shown below.

The transform $S = \frac{6S}{s^2 + 269}$ is applied to this function to obtain a band-reject characteristic. Give a sketch of the band-reject magnitude characteristic. Give all crucial specifications(Ω_1 , Ω_2 , Ω_0 and B) on this characteristic.

- (b) (i) Design a 3rd order Active Low Pass Filter with cut off frequency of 1kHz.
 - (ii)State the significance of Quality Factor Q and Damping Factor in Filter design.

5

(c) Convert a 2nd order active LPF into a HPF to get a cut off frequency of 330 Hz.