

COLLEGE OF ENGINEERING, PUNE

(An Autonomous Institute of Government of Maharashtra.) SHIVAJI NAGAR, PUNE - 411 005

END Semester Examination (ET-205) Signals and Systems

_	D 70 1
Course:	B. Iech

Year:

Branch: Electronics and TeleCommunication Engineering

Semester: Sem III

2014-2015

Max.Marks:60

Date: 2 8 NOV 2014

Duration: 3 Hours

Time: 10.00 to 1.00 p.m.

Instructions:

- 1. Figures to the right indicate the full marks.
- 2. Mobile phones and programmable calculators are strictly prohibited.
- 3. Writing anything on question paper is not allowed.
- 4. Exchange/Sharing of anything like stationery, calculator is not allowed.
- 5. Assume suitable data if necessary.
- 6. Write your MIS Number on Question Paper
- Q. 1 A The trapezoidal pulse x(t) shown in Fig. 1 is applied to a differentiator defined by $y(t) = \frac{dx(t)}{dt}$. (i)Determine resulting output y(t) of the differentiator
 - (ii) Determine total energy of x(t).
 - (iii) The pulse shown in Fig. 1 is time scaled by y = x (at). Sketch y (t) if a=0.2.

$$x(t)=\begin{cases} 5-t & 4 \le t \le 5\\ 1 & -4 \le t \le 4\\ t+5 & -5 \le t \le -4\\ 0 & \text{otherwise} \end{cases}$$

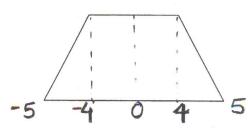
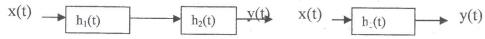



Fig. 1

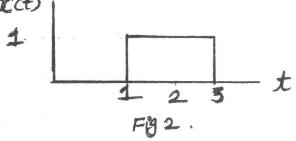
B The system is formed by cascading of two systems. The impulse response of the system is given by $h_1(t) = e^{-2t}u(t)$ and $h_2(t) = 2e^{-t}u(t)$

Find impulse response h(t) of overall system.

Find Fourier Transform of the signal $x(t) = \begin{cases} e^{-at} & t > 0 \\ e^{at} & t < 0 \end{cases}$ (3)

Sketch X(w)

D Find Fourier Transform of $x(t) = (cosw_0 t)$. Plot the spectrum.


(2)

Q. 2 A Convert following differential equation into integral and draw Direct Form-I and (5)Direct form-II.

$$\frac{d^{3}}{dt^{3}}y(t) + 2\frac{d}{dt}y(t) + 3y(t) = x(t) + 3\frac{d}{dt}x(t)$$

- Consider a causal discrete time FIR filter described by the impulse response (5) $h(n)=\{\begin{array}{ccc} 2 & 2 & -2 \\ \bullet \end{array}\}$ a)Sketch the impulse response h(n) of the filter.

 - b) Find the frequency response of the filter H(e^{JW})
 - c) Sketch the magnitude response $\left|H(e^{jw})\right|$
- C Consider a continuous time LTI system whose step response is given by (3) $s(t) = e^{-t}u(t)$. Determine & sketch the output of the system to the input x(t) shown in Fig 2.

D Evaluate the continuous time convolution integrates for

$$y(t) = (u(t) - u(t - 2)) * u(t)$$

A Find the response of the circuit to the input (5) x(t) = r(t) - 2r(t-1) + r(t-2)

(2)

B Given $x_1(t) = e^{-2t} u(t)$ and $x_2(t) = e^{-3t} u(t)$ Using Laplace Transform (4) Determine y(s) where

$$y(t) = x_1 (t - 2) * x_2(-t + 3)$$

- Find inverse Laplace transform of $x(s) = \frac{s^2 + 2s + 5}{(s+3)(s+5)^2}$ for Re(s)> -3 (3)
- **D** Find initial and final values for the following Laplace transforms (3)

(i)
$$x(s) = \frac{s+5}{s^2+3s+2}$$
 (ii) $x(s) = \frac{s^2+5s+7}{s^2+3s+2}$

$$x(n) = u(n)$$
 and $h(n) = \infty^n$ $0 < \infty < 1$

B Determine z-transform of the following signal (5)
$$x(n) = \frac{1}{2}(n^2 + n) \frac{1}{3}^{n-1} u(n-1)$$

(5)

C Determine for all possible signals x(n) associated with z-transform x(z). Show ROC in s-palne in each case.

$$x(z) = \frac{5 z^{-1}}{(1 - 2z^{-1})(1 - 3z^{-1})}$$