College of Engineering Pune

E &TC Department

T.Y.B. Tech

Digital Signal Processing

End Semester Examination, November 2012

Time:3hrs

Date:24th Nov 2012

Instructions:

Max. Marks 50

All questions are compulsory

Assume suitable data if necessary

Figures to right indicates marks allotted to the questions

Q.No. 1 a) A discrete time system has a unit sample response h(n) given by

3

$$h(n) = \frac{1}{2}\delta(n) + \delta(n-1) + \frac{1}{2}\delta(n-2)$$

- i)Find the system frequency response.
- ii)Find the response of the system to $x(n)=5 \cos(\pi n/4)$
- iii)Find Transfer function and comment on the stability of the system.
- b) Find inverse transform of

3

$$X(n) = \frac{z}{3z^2 - 4z + 1}$$

When the ROC is a) $|z| > 1,....and.... |z| < \frac{1}{2}$

c) Compare direct form I and Direct form II realization of IIR systems

	d)	List the problems of finite word length in digital filter.	3
Q. No. 2	2 a)	What is Multirate Digital Signal Processing Discuss direct form I	5
	b)	Structure implementation for multirate DSP. How sampling rate can be converted using I/D rational factor	4
Q.No.3	a)	What is the cause of frequency warping? What is the cause of this effect?	3
	b)	Find the transfer function H(s) for the normalized Butterworth filter of order 2.	3
Q.No.4	a)	Design low pass IIR Digital filter with a maximally flat magnitude characteristic. The passband edge frequency is $\omega_{p=} 0.25\pi$ with a passband ripple not exceeding 0.5 dB. The minimum stopband attenuation at the stopband edge frequency of ω_s = 0.55 π is 15dB.	6
	b)	Compare impulse invariant method and bilinear transform method with approximation method.	3
Q. No.5	a)	Find (8-point) DIF FFT for a sequence. $x(t)=\{1\ 2\ 2\ 2\ 0\ 1\ 1\ \}$ Verify result by finding Inverse FFT.	5
	b)	Discuss FIR filtering method using windowing technique.	3
Q.No.6	a)	What is time aliasing?	3
	b)	Derive equation for circular convolution.	3