A Vistingerore is

COLLEGE OF ENGINEERING, PUNE

T.Y.B. Tech. (Institute Level Elective-II)

(ISO2-4) Finite Elements in Engineering

End-Semester Examination

Year : 2012-13 Max. Marks: 40

Semester : II
Time: 3 Hour

Instructions:

- 1. ALL Questions are compulsory.
- 2. Assume suitable data if necessary.
- Q.1 (a) Triangular elements have been used for modeling a heated flat [04] plate. The (x,y) coordinates of nodes i,j, and k of an interior element are given as (5,4),(8,6) and (4,8) cm respectively. If the nodal temperatures are found to be $T_i = 100^{\circ}C$, $T_j = 80^{\circ}C$, and $T_k = 110^{\circ}C$, find the temperature at point P located at $(x_P, y_P) = (6,5) cm$
 - (b) The temperatures at the corner nodes of a rectangular element,in [06] ${}^{0}C$ are given by $T_{i} = 90, T_{j} = 84, T_{k} = 75, \text{ and } T_{l} = 85. \text{If the length and}$ width of the element are $x_{ij} = 15 \text{mm}$ and $y_{il} = 10 \text{mm}$, determine the temperature distribution in the element.
 - (c) The nodes of a quadratic one-dimensional element are located at [03] x = 0, x = L/2, and x = L.Express the shape functions using Lagrange polynomial of order n, $L_j(x) = \prod_{i=1, i\neq j}^n \frac{x x_i}{x_j x_i}$

- Q.2 (a) Explain in brief any *Two* finite elements that you have used for carrying out *Finite Element Analysis*. [08]
 - (b) Determine the axial stress distribution in a bar that is rotating at [06] 500 *rpm* as shown in figure. The problem can be treated as one dimensional with the governing differential equation as follows:

$$\frac{d}{dx}\left(EA\frac{du}{dx}\right) + \rho Ax\omega^2 = 0; 0 < x < L$$

$$u(0) = 0; EA\frac{du(L)}{dx} = 0$$

where x is the coordinate along the axis of the bar,u(x) is the axial displacement,L= length of the bar,E=Young's modulus, A=area of cross section, ρ =mass density, and ω = angular velocity in rad/s. The axial stress is $\sigma_x = Edu/dx$. An exact analytical solution of the problem is $\sigma_{x,Exact} = \frac{\rho \omega^2}{2} (L^2 - x^2)$.

Compare solution using one linear element $[u(x) = c_0 + c_1 x]$. L = 80cm; E = 200GPa; $A = 250mm^2$; $\rho = 7850kg/m^3$.

(c) Compute Jacobian for element 1 as shown below.

[04]

Global	Nodal	
Node Number	Coordinates	
1	(-4, -3)	
2	(0, -3)	
3	(4, -3)	
4	(5,0)	
5	(6,3)	
6	(0,3)	
7	(-4,3)	
8	(-4,0)	
9	(0,0)	

Q.3 Explain in brief the important steps you followed while carrying out *Mini-Project work*.

[09]
