College Of Engineering, Pune

(An Autonomous Institute of Government of Maharashtra)

Mid Semester Examination

Tuesday of Condust

IE- 303 Digital signal processing

Semester - I

Year: 2012

Branch: Instrumentation and Control

Academic Year: 2012~2013

Max. Marks: 50

Duration: 3 hrs **Instructions**:

- 1. Solve any five questions.
- 2. Figures to right indicate full marks.
- 3. Draw neat figures wherever required.
- 4. Assume suitable data if necessary.
- 5. Use of non programmable calculator is allowed.
- Q.1a. What do you mean by real number single precision 5 representation
 - b. What are problems in storing and recalling in digital 3 computers?
 - c. What are the functions of shadow registers?
- Q.2 a. What is multiport memory? How is affect the operations of processor? What are limitations of such technology?
 - b. Explain the working of time division multiplexing 2
 - c. write the meanings of following instructions
 i. SACH, ii. SACL, iii. SAMM, vi. LAR, v. SAR
- Q.3 a. Determine the output response of a system having impulse response $h(n) = (1/4)^n$ u(n) subjected to the input signal $x(n) = e^{jn(\pi/4)} + 3e^{-jn\pi/3}$
 - b. A four pole band pass filter system has $|H(\omega)| = 1 \qquad \qquad \text{for } \pi/6 <= \omega <= \pi/2$ $= 0 \qquad \qquad \text{elsewhere}$

With four poles at $P_1 = 0.8 \ e^{j2\pi/9}$; $P_2 = 0.8 \ e^{-j2\pi/9}$; $P_3 = 0.8 \ e^{j4\pi/9}$; and $P_4 = 0.8 \ e^{-j4\pi/9}$

With four zeros at $Z_1 = 1$; $Z_2 = -1$; $Z_3 = e^{j3\pi/4}$; and $Z_4 = e^{-j3\pi/4}$ Determine the H(z) such that

 $|H(5 \pi/2)| = 1$

College Of Engineering, Pune (An Autonomous Institute of Government of Maharashtra)

Mid Semester Examination

Q.4 a. Find the DFT of the following sequence x by using **DIF FFT** algorithm.

5

$$x = (1, -1, -1, -1, 1, 1, 1, -1)$$

b. Find the circular convolution of $x = (1 \ 0 \ 1 \ 1 \ 0)$, $y = (1 \ 2 \ 3 \ 4 \ 5)$ using DFT property

5

5

Q.5 a. Design an analog Chevbyshev low-pass filter to satisfy the following specifications: (a) acceptable passband ripple of 2 dB, (b) cutoff frequency of 40 rad/sec, and (c) stopband attenuation of 20 dB or more at 50 rad/sec.

b. Design a FIR of following specification

5

$$H_d(\omega) = 0$$
 for $0 \le |\omega| \le \pi/2$

= 1 for
$$\pi/2 \le |\omega| \le \pi/2$$

with filter length 11 and hamming window

Q.6 a Design an analog filter with following specifications

5

- a. Maximally flat
- b. Pass all the signals of radian frequency greater than 20 rad/sec with no more than 2 dB of attenuation
- c. Stopband attenuation of greater than 20 dB for all $\boldsymbol{\Omega}$ less than 10 rad/sec.
- b Design a low pass FIR filter with following specifications

5

Passband frequency = $1kHz(f_p)$

Stopband frequency = $4 \text{ kHz} (f_s)$

Sampling frequency = 10 kHz (F_s)

Passband attenuation = $1 dB (A_n)$

Stopband attenuation = $15 dB(A_s)$

Using Kaiser window

2