pech

College of Engineering, Pune

(T.Y.B. Tech.)- (MECHANICAL)

(ME-311)- (Machine Design-II)

Date-04/5/2013 Academic Year: 2012- 13 Timing: 3 hrs Max. Marks: 50

END SEM EXAM

Instructions:

- 1. All questions are compulsory
- 2. Assume suitable data if necessary.
- 3. Figures to the right indicate full marks.
- 4. Use of only non-programmable calculator is allowed.

Q.1	is .	Answer any four	12
	A.	Sketch different arrangements of worm gear reducer.	
	В.	With neat sketch explain straddle mounting of bevel pinion and gear. State advantages and disadvantages of straddle mounting.	
	C.	Write the desirable properties of gear material. State different materials used for manufacturing of gears with their advantages and disadvantages.	-
	D.	Sketch the force analysis for helical gear and find the relation between transverse and normal pressure angle for helical gear.	
	E.	What is dynamic load on gears? State the factors on which the dynamic load depends and explain the methods of estimation of dynamic load on spur gear tooth.	
Q. 2		A pair of worm gear is designated as 2/52/10/4 transmits 10 kW power from an electric motor rotating at 720 r.p.m. to a machine. The worm is right hand and rotates in clockwise direction, when viewed from right side. Sketch the arrangement and show the component of tooth forces. The coefficient of friction between worm and worm gear is 0.04 and normal pressure angle is 20°. The coefficient of heat transfer may be taken as 20 W/ m² °C. The rise in temperature of lubricating oil above the atmospheric temperature is 50 °C. Determine	07

		i Component of tooth forces acting on worm and worm gear; ii Efficiency of worm gear pair; and iii Minimum required effective surface area of worm gear box. Is the drive self locking? Comment. Assume worm is above the worm gear.							
Q. 3	150								
70		Velocity factor, $Kv = \frac{6}{6+V}$							
Q.4		Answer any one from following.							
-	<u>A.</u>	Write short note on Weibull distribution.							
Q.5	В.	Explain causes of stress concentration. A single- row deep groove ball bearing operates with the following work cycle. If expected life of the bearing is 28000 hours with a reliability of 80 %, calculate the basic dynamic load rating capacity of the bearing so that it can be selected from a standard manufacturer's catalogue.							

	Element	Radial	A	xial	Ŗadial	Axial	Race	Service	
	Time %	Load	L	oad	Factor	Factor	Rotating	Factor	
		kN	kì	V				To the control of the	
	30	2.8	1.	2	0.56	1.4	Inner	1.75	
	40	5.3	1		0.56	1.6	Outer	1.35	-
	Remaini	NIL	N.	IL .			outer		
	ng								
0.5	D : D	£)R				
Q.5	Derive Petroff's equation.								
Q.6	PitchCoefAngleWeigGear	l bearing lley 'P' a eter at A 4. If the a manumeter of a circle deficient of a circle deficient of a cht of pure the a cht of Georgessure	s .The and trand I expect factur oulley iamet frict for be ar =1 e ang	e shaft re ansmits p 3 are 17 r ted rating rers catalo 7 = 250 m ter of gea ion betwee 1t = 180° 150 N 00 N le = 20°	ceives 8 loower thromm and 3 g life is 50 ogue using m	cW at 1000 ough a spu 5mm respe 0,000 hour g following	orpm. Throws r gear 'G'. ectively. The select the g data:	ough a The ne load	
	Bearing N	0.	5003	6203	6303	6403	6007	5207	
	Basic dyna capacity '		5.05	9.56	13.50	22.9	9	25.50	
	Bearing		150 N	Bearing B		G O N T _{ft}		Ft	

*		
Q.7	Following Data is given for a 360 ⁰ hydrodynamic bearing:-	08
	· ·	
	Radial load =10 kN	
	 Journal speed=1440 rpm 	
	 Unit bearing pressure =1000 kPa 	
	Clearance ratio(r/c)=800	
	 Viscosity of lubricant =30 mPa-s 	
	 Assuming that the total heat generated in the bearing is carried 	
	by the total oil flow in the bearing. Calculate:	
	 Dimensions of bearing 	
	2. Coefficient of friction	
	3. Power lost in friction	
	4. Total flow of oil	
x.	5. Side leakage	
	6. Temperature rise	
	(Hint: Assume 1/d =1; Interpolate the data if required)	