C.O.E.P

ELECTRICAL ENGINEERING DEPARTMENT

END SEMESTER EXAM (2013-14)

Signal Processing [EE-09005]

Branch: Electrical

Total: 60 Marks

S.Y.B.Tech

Time: 3:00 hr

Note:

(i) All questions are compulsory

Q.1	Α.	Consider the Discrete –Time signal	5 Marks
		$x[n] = 1 - \sum_{k=3}^{\infty} \delta[n-1-k]$	
		Determine the value of the integers M and n_0 so that $x[n]$ may be expressed as	
		$x[n] = u[Mn - n_0]$	
	В.	Explain the representation of discrete—time signals in terms of Impulses.	3 Marks
	C.	Explain the properties of Linear-Time Invariant systems.	4 Marks
2.2	A.	Calculate and draw the convolution of two signals given below (assuming $\alpha>1$)	5 Marks
		$x[n] = \begin{cases} 1, & 0 \le n \le 4 \\ 0, & \text{otherwise}. \end{cases}$	
		$h[n] = \begin{cases} \alpha^n, & 0 \le n \le 6 \\ 0, & \text{otherwise} \end{cases}$	
	В.	Draw the amplitude and phase spectrum of the Fourier coefficients of the signal given below $x(t) = 1 + \sin \omega_0 t + 2\cos \omega_0 t + \cos \left(2\omega_0 t + \frac{\pi}{4}\right)$	5 Marks
2.3	Α.	Explain the representation of continuous-time aperiodic signals with Fourier Transform (take continuous-time periodic square wave for explanation).	4 Marks
	В.	Explain the Parseval,s relation in Continuous-time Fourier Trasform	3 Marks
	C.	Explain the convergence issues associated with the Discrete-time Fourier transorm.	4 Marks
2.4	Α.	Consider a signal that is sum of a real and a complex exponential $x(t) = e^{-2t}u(t) + e^{-t}(\cos 3t)u(t)$	5 Marks
		Find the Laplace transformation and Draw the ROC.	
	В.	Explain the Sampling theorem with an example.	4 Marks
	C.	Explain Aliasing	4 Marks

Q.5	A.	Explain the properties of the region of convergence for z- transform.	4 Marks
	В.	Consider the signal	5 Marks
		$x[n] = \left(\frac{1}{3}\right)^n \sin\left(\frac{\pi}{4}n\right) u[n]$	
		Find the z-transform of the signal and draw the ROC.	
	C.	Consider the z-transform	5 Marks
		$X(z) = \frac{3 - \frac{5}{6}z^{-1}}{(1 - \frac{1}{4}z^{-1})(1 - \frac{1}{3}z^{-1})}, z > \frac{1}{3}$	
		Determine the Inverse z-transform.	