Department of Civil Engineering End Semester Examination (CE 412) Transportation Engineering II

Maximum marks: 50

Figures to the right indicate full marks

Date: .12.05.2012 Time: 2.00pm to 5.00pm

Que. 1: a) Explain in short various types of overlays. Illustrate the concept of Benkleman beam test and the steps involved therein. (03)

- b) Draw neat sketches of any five types of bridges and illustrate under which circumstances they are preferably used. (03)
- c) Prepare wind rose diagrams Type II with the help of following data. Suggest the best possible orientation of the runway. (04)

Wind	Duration of wind, percent					
Direction	6.4 – 25 kmph	25-40 kmph	40-60 kmph			
N	10 v 8.3	3.2	0.3			
NNE	6.1	1.9	0.4			
NE	2.6	0.8	0.7			
ENE	your 1.8 00 ax	0.5	0.2			
E	3.2	1.2	0.4			
ESE	0.3	0.4	0.0			
SE	5.3	3.8	2.1			
SSE	5.7 10	(T 19/3.2 100) o	1.0			
S	9.7	5.6	1.5			
SSW	8.5	1.5	2.0			
SW	4.2	2.2	0.7			
WSW	4.3	2.7	2.9			
W	5.2	0.9	2.3			
WNW	1.5	0.5	0.8			
NW	3.7	3.0	2.1			
NNW	6.2	1.5	1.7			

Que. 2: a) We have various types of bituminous layers (e.g. BM, DBM, AC etc.) provided in flexible pavements. Draw neat sketches (only cross section) to illustrate the various possibilities of layers which can be provided. Mention the required percentage of bits content in each mix.	
	(05)
c) Explain in short various methods adopted for surface and subsurface Airport drainage. ((05)
Que. 3: a) Explain the concept of Camber and superelevation in road construction. Suggest method of its application and construction in field.	st the (03)
b) Explain with neat sketch the Elastomeric Bridge Bearing. Write down at least advantages of the same.	four (03)
c) Explain in detail airport Master Plan. Give the recommendations given by FAA preparation of the master plan.	for (04)
Que. 4: a) Explain the use of Wind Rose Diagram. Explain any one method of drawing same.	g the 03)
b) Explain any six types of Concrete Pavement failures. Draw sketches to illustrate the sa	
CI Describe with evetches a builder failure	03) 04)
Que. 5: a) Write short note on 'Heliport'.	03)
b) Explain the use of Flash and Fire Point of bitumen in road construction. (0	03)
c) Write detailed description of Balanced Cantilever Type of bridge launching system. Draw neat sketches to illustrate the same.	v 04)

(04)

College of Engineering, Pune

Wellesley Road, Shivajinagar, Pune 411005

End-Semester Examination

(CE-410) Construction Equipments and Machinery (CEM)

Programme: B.Tech Year: 2011-12 Duration: Three Hours

Specialization: Civil Engineering Day & Date: Monday 07/05/2012 Max. Marks: 100

Instructions

- 1. Read all the questions carefully before you start writing the answers.
- 2. Numbers to the right indicate full marks
- 3. Draw neat sketches wherever necessary
- 4. Marks may be deducted for leaving blank pages in between two questions.
- It is proposed to connect JNPT Port to Main land by means of cable stayed bridge between (20) Q. 1 Nava-Sheva Island and Navi Mumbai as shown in Figure-01. There is an Airport near vicinity of the proposed site therefore bridge should not obstruct landing and taking off of the aeroplanes. In order to facilitate faster goods transport Railway Authorities are ready to partially fund the bridge , provided it enables rail traffic by providing a double decker bridge giving a separate passage for trains. As airport is near, entry to the cable stayed bridge needs to be through a tunnel. For this purpose Near Navi Mumbai side an artificial island may be needed for the transition of vehicular movement. It is easier to cast the tunnel segments in the area Near Navi Mumbai Coast. Your company is interested in submitting a proposal for the work. Prepare your proposal taking in to consideration following points.
 - i) Schematic sketch of the over all project showing the tunnel portion and Bridge portion needs to be given.

Sketches need to be provided for the casting and transporting of the bridge and tunnel segments to the proposed alignment and sinking them.

- The Railway authorities want the bridge super structure in steel as it is reliable iii) as well as better quality control is possible so sketches of bridge cross section need to be provided.
- iv) Procedure for the construction of artificial island for the transition need to be elaborated.
- V) Method of launching of bridge super structure needs to be given with sketches and explanation where needed.
- Typical sketches showing the bridge piers as well as protection for the bridge vi) piers against impact by Ships.
- The alignment shown is over a fisheries harbour used by fishermen in Navi vii) Mumbai.
- Q. 2 a) Identify following equipments shown in Figure-21 and Figure-22 and label their parts by (10)redrawing the figures on your answer book. Also state the advantages and limitations in their use for each of them.

Figure-21

Figure-22

(CE 410) Construction Equipments and Machinery **End Semester Examination 2011-12** Page 1 of 4

College of Engineering, Pune Wellesley Road, Shivajinagar, Pune 411005

Q. 2	b)	State most common types of mobile cranes used in civil engineering construction projects. (10 Explain any one of them with neat sketches.								
0.3	- \					(
Q. 3	a)	i) Enlist different types of pil			the adventages and dis-	(10)				
		advantages of coffer dam ar		u Caissons, State	e the advantages and dis-					
	b)	A 2.5-cy short-boom draglin		o excavate hard.	tough clay. The depth of cut	(10)				
	,				ion of 50% work it rains and					
					on of the dragline, There are					
					roject require to complete if					
		after completion of 50% wor								
Q. 4	a)	i) Define Geosynthetics. Enlis				(10)				
					properties and functions of					
		geosynthetics, and their purp	oose and location	1						
		Properties	Functions	Purpose	Locations					
		Thickness	Turicuoris	1 urpose	Locations					
		Permeability								
		Continuity	And the second s							
		Tensile strength								
		Friction								
			OR							
	a)	A fleet of 22-ton rear-dump				(10)				
		follows are used to haul sar								
		trucks. The trucks will be lo								
		from the borrow site to the								
		hoe should be able to cycle			d congestion on the fill. The					
		lb/cy. A realistic efficiency es								
		of the fleet.	scimace for this i	WOLK IS SO THILL HO	ar. Analyze the performance					
		Specifications:								
		Capacity Struck - 14.7 cy, He	eaped, 2:1, 18.3	СУ						
		Net weight empty – 36,860,								
	b)	Why it is necessary to do s			ethods of soil stabilization?	(10)				
0 -		Explain any one of them in d								
Q. 5	a)	Draw neat sketches for Seg	mental Method (of Construction of	Bridge Super Structure and	(10)				
		Incremental Launching Meth Wedges. Also differentiate be								
		Wedges. Also differentiate be		DR	ext.					
	a)	State the rules which need to			ressfully	(10)				
	b)	State the factors about which				(10)				
		neat sketch and explain fu				()				
		points.	-		3					
		i) Feed size to be used								

iii) Advantages and disadvantages as compared with Jaw Crusher and impact crushers.

ii) Single roll, double roll, capacity

College of Engineering, Pune Wellesley Road, Shivajinagar, Pune 411005

Table-01 | Effect of the depth of cut and swing angle on dragline production.

of optimum	-	Charles of the	Angie	of swh	ng (deg	rees)		
depth	30	45	60	75	90	/ 120	150	180
20	1.06	0.99	0.94	0.90	0.07	AND SHAPE SELECT	3344 M. A. A.	101
40	1.17	1.08	1.02		0.87	0.81	0.75	0.70
60	1.24	1.13	1.06	0.97	0.93	0.85	0.78	0.72
80	1,29	1.17		1.01	0.97	0.88	0.80	0.74
100	1.32		1.09	1.04	0.99	0.90	0.82	0.76
120		1.19	1.11	1.05	1.00	0.91	0.83	0.77
140	1.29	1.17	1.09	1.03	0.98	0.90	0.82	-
	1.25	1.14	1.06	1.00	0.96	0.88	A COLOR	0.76
160	1.20	1.10	1.02	0.97	0.93		0.81	0.75
180	1.15	1.05	0.98	0.94		0.85	0.79	0.73
200	1.10	1.00		20100-0-	0.90	0.82	0.76	0.71
	*****	1.00	0.94	0.90	0.87	0.79	0.73	0.69

Table-02 * Optimum depth of cut and ideal production of short-boom draglines.*

		200100.000	a hiodac	won of Bh	00-000m	draglines			
1. 10 mm 1					ize of bi [cy (cu i	ucket m)[f			
Class of material	(0.29)	(0.38)†	(0.57) [†]	(0.76)	1 <u>1</u> (0.95)	(1.14)	1] (1.33)†	2	24
Moist loam or light sandy clay	5.0 (1.5) ² 70 (53) ⁴	5.5 (1.7)* 95 (72)\$	6.0 (1.8) [‡] 130 (99) [‡]	6.6 (2.0) ² 160 (122) ³	7.0 (2.1)‡ 195 (149)‡	7,4 (2,2) [‡] 220 (168) [§]	7.7 (2.4) [‡] 245 (187) [§]	8.0 (2.5)* 265 (202)*	8.5 (2.6)‡ 305 (233)‡
Sand and grave)	5.0 (1.5) 65 (49)	5.5 (1.7) 90 (69)	6.0 (1.8) 125 (95)	6.6 (2.0) 155 (118)	7.0 (2.1) 185 (141)	7.4 (2.2) 210 (160)	7.7 (2.4) 235 (180)	8.0 (2.5) 255 (195)	6.5 (2.6) 295
Good common earth	6.0 (1.6) 55 (42)	6.7 (2.0) 75 (57)	7.4 (2.4) 105 (81)	8.0 (2.5) 135 (104)	8.5 (2.6) 185 (127)	9.0 (2.7) 190 (147)	9.5 (2.8) 210 (162)	9.9 (3.0) 230 (177)	(225) 10.5 (3.2) 265 (204)
Hard, tough clay	7.3 (2.2) 35 (27)	8.0 (2.5) 55 (42)	8.7 (2.7) 90 (69)	9.3 (2.8) 110 (85)	10.0 (3.1) 135 (104)	10.7 (3.3) 160 (123)	11.3 (3.5) 180 (139)	11.8 (3.6) 196	12.3 (3.8) 230
Wet, sticky clay In cubic yards (cubic meters) i	7.3 (2.2) 20 (15)	8.0 (2.5) 30 (23)	8.7 (2.7) 55 (42)	9.3 (2.8) 75 (58)	10.0 (3.1) 95 (73)	10.7 (3.3) 110 (85)	11.3 (3.5) 130 (100)	(150) 11.8 (3.6) 145 (112)	(177) 12.3 (3.8) 175 (135)

^{&#}x27;în cubic yards (cubic meters) bank measure (bcy) per 60-min bour.

These values are the sizes of the buckets in cubic meters (cu m).

These values are the optimizen depths of our in mesers (m).

These values are the optimum ideal outputs in cubic meters (eu m).

College of Engineering, Pune Wellesley Road, Shivajinagar, Pune 411005

Figure-01

College of Engineering, Pune End Semester Exam – May 2012

B. Tech. Civil

(CE 455)- Water Resources Planning and Management

Date- 05/05/2012 Maximum Marks: 50

Time: -2 pm to 5pmDuration -3 hrs.

Instructions:

- 1. All questions are compulsory.
- 2. Draw neat figures wherever required.
- 3. Assume suitable data if necessary.
- 4. Use of scientific calculator is allowed.
- Q.1 A Regulate a hydropower reservoir for a dependable (firm) yield of 150 06 MCM/month. The live storage capacity of reservoir is 742 MCM. Take a constant head of 320m. The power plant capacity is 210 MW and the overall efficiency is 0.85. Assume reservoir has storage of 230 MCM in the beginning of June. Take the river flows of the year 2006-07 from the table given below. Take 30.417 days every month.

Sept Oct	Nov	Dec	Jan	Feb	Mar	Apr	May
389 424	110	68	70	50	47	39	35
Total Description of the	389 424	389 424 110	389 424 110 68	389 424 110 68 70	389 424 110 68 70 50	389 424 110 68 70 50 47	Sept Oct Nov Dec Jan Feb Mar Apr 389 424 110 68 70 50 47 39

B Explain standard operating policy of reservoir operation.

02

Q.2 A Calculate the present worth of net benefits for the project with the following of data. The project requires 1 year for construction and provides 5 years of benefits after construction. The applicable discount rate is 10%. Each amount is an end-of-year value.

Year	Construction cost	Operation cost	Benefits
1	100		-
2	-	10	20
3	-	10	40
4	-	10	60
5	-	10	80
6	-	10	100

B Differentiate between optimization and simulation.

02

- Q.3 The flow duration curve data at a run-of-river hydro plant site is given below: 08 If the constant head is 50 m and the power plant efficiency is 60%
 - Calculate total amount of firm energy available,
 - If the power plant capacity is 90 kW, calculate the amount of peak (ii) energy available
 - Calculate the total energy potential available, (iii)
 - If at least 0.05 cumecs flow must be maintained in the stream for (iv) environmental considerations, calculate peak energy available.

Table - Weekly flow duration curve data

Stream discharge in cumecs	0.60	0.35	0.30	0.17	0.12
Period during which discharge is equalled or exceeded in %	8	21	28	80	100

- Q.4 A Discuss the type of structures, data needed and analysis required for water 05 conservation and flood control measures for Stage III in respect of a water resources development plan in a river basin.
 - Discuss the steps involved in planning an irrigation reservoir

03

Q.5 There are two crops to be grown on 120 hectare area (CCA). The other data is 08 given in Table below:

Crop	Net return from crop (Rs. 10 ³ /tonne	Crop Yield (tonnes/ha)	Gross irrigation requirement (m)
1	2	2.2	0.7
2.	1.5	3.1	0.4

Also

- (i) total water available for irrigation diversion from a reservoir is 600 ha.m
- (ii) crop 2 should occupy at least 30 hectare, and
- (iii) Area of crop 1 should not exceed 45 hectare.

Formulate and solve an LP model to maximize net returns from the crops.

Q.6 Write short notes on any Two

10

- a) Inter-state river water disputes in India
- b) Inter-basin river water transfers in Indian rivers
- c) Integrated river basin management
- d) Environmental considerations in planning

Department of Civil Engineering

College of Engineering Pune (CoEP)

Subject: CE 431 Advanced Environmental Engineering

BTech (Civil) Programme: Max. Marks: 50 End Semester Examination Instructions to the candidate: 1. All questions are compulsory 2. Assume suitable data if necessary Explain with neat sketch rotary atomizer technique of odour control. Q.1. a. (3)Enumerate the application of stone crusher dust b. (2)Explain the procedure for operation of RDS C. (3)d. The maximum ground level concentration of SO_2 occurs at a distance x = 850m. If plumes standard deviation in cross wind direction is 38m, effective height of stack is 80m, plume standard deviation in vertical direction is 56.6 m and the wind velocity at the top of the stack is 8.0 m/sec determine the concentration SO_2 in $\mu g/m^3$. (2)What are the objectives of water quality monitoring Q.2a. (2)Write in detail on water quality assurance programme b. (4)The ratio of head losses (H_{L1}/H_{L2}) through the pipe is 1.8 m/s(where H_{L1} is the C. head loss through pipe as per Darcy Weisbach Equation and H_{1,2} is head loss through pipe as per Hazan Williams formula). If $K_1 = K_2$. Find the corrected discharge through the pipe. (2)d. What is AQI? Explain in detail how to calculate AQI. (2)Q.3Explain with neat sketch electrostatic precipitator a. (3)b. Explain the Environmental (Protection) Act, 1986 (3)An air streams with a flow rate of 7 m³/s is passed through a cyclone of standard C. proportions. The diameter of the cyclone is 2.0m and the air temperature is 77°C. (Take μ = 2.1 x 10⁻⁵ kg/m.s.) (i) Determine the removal efficiency for a particle with a density of 1.5 g/cm³ and a diameter of 10 µm.

> (ii) Determine the collection efficiency based on the above if a bank of 64 cyclones with diameters of 24 cm are used instead of the single large

unit.

Q.4	a.	Explain with neat sketch soil washing technology		
	b.	Explain with neat sketch deep well injection method	(4)	
	c.	Explain the formation of micelle	(4)	
		of the control of the	(2)	
Q.5	a.	Calculate the SDS loading in mg/g of Al ₂ O ₃ if		
		(i) Equation of calibration is		
		Y = 0.1943 x + 0.0055		
		$R^2 = 0.9927$		
		(ii) Absorbance of solute is 2.113		
		(iii) Volume of collected supernatant = 980 ml		
		(iv) Dilution used is 0.1 ml of supernatant to make 100 ml of diluted sa	ya a La	
		(v) 20 g of SDS and 100g of Al_2O_3 are used.		
	b.	Total volume of wastewater treated to the point of exhaustion and brea	(4)	
		in litre are 30.38 and 15.66. The initial solute concentration is 100 r	ikthrough	
		solute concentration at any time t is 12 mg/L. Assume height of excharge	ng/L and	
		cm and bed depth is 10 cm. Find the percentage of the total column sat	ige is 6.3	
		breakthrough.	turated at	
1 * 9 8 1 V	c.		(3)	
		Explain with neat sketch column study for removal of contaminant	(3)	

COLLEGE OF ENGINEERING, PUNE

B. Tech. (Civil)

End-Semester Examination, May, 2012

(CE-416) SUSTAINABLE DEVELOPMENT

Day & Date: Saturday, 05/05/2012

Time: 2 PM to 5 PM

[Max. Marks: 50]

Duration: 3 Hours

Instructions to Candidates:

- 1. Q.1 and Q. 5 are compulsory
- 2. Answer any two questions in each section from the remaining.
- 3. Neat diagrams must be drawn wherever necessary
- 4. Assume suitable data if necessary
- 5. Figures to the right indicate full marks

Section I

Q.1 Explain the term "Ecological Foot Print" in detail	(09)
Q.2 What do we mean by EIA? Explain its importance.	(08)
Q.3 Describe about 'Life Cycle assessment.	(08)
Q.4 Write a detailed note on Triple Bottom Line.	(08)
Section II	
Q.5 With the help of one example of any construction project, explain how EIA is conduct the same.	ted for (09)
Q.6 Explain the importance of learning sustainable development for Civil Engineer.	(08)
Q.7 Write your views on use of locally available building material for construction.	(08)
Q.8 Write a note on use of non conventional energy sources to achieve a goal of sustainable development	(08)

COLLEGE OF ENGINEERING

(Formerly Government College of Engineering, Pune)

END-SEM EXAM: 2011-12: Semester II

(CE-409) Quantity Surveying & Valuation

B. Tech - CIVIL

Timing: 02.00 pm - 05.00 pm

Day & Date: Wednesday 09/05/12

Duration: 3.00 hrs

Max. Marks: 100

Instructions:

- 1. All questions are compulsory.
- 2. Figures to the right indicate full marks.
- 3. Draw neat diagrams wherever required.
- 4. Assume suitable data if required and mention it clearly.

Marks

- Q.1 Figure no.1 shows the plan & section of a residential building. Take out the quantities for the following items and record the measurements in proper form.
 - i) Excavation for foundation
 - ii) B.B. Masonry in c.m. (1:6)
 - iii) Marble mosaic flooring
 - iv) External plaster

(20)

- Q.2 A) Calculate the present book value of the property from the following data:
 - i) Built up area of building = 370 sq.m.
 - ii) Area of the plot = 1,200 sq.m.
 - iii) Year of construction of building = 1970
 - iv) Cost of construction = Rs.1000/sq.m.
 - V) Cost of land purchased = Rs. 100/sq.m.
 Assume any other suitable additional data if required and mention it clearly.

(8)

(8)

- An owner has constructed 8 flats on a plot of land measuring 600 sqm. The land was purchased for Rs. six lacs and the cost of construction including all its ancillary costs, electrification etc was Rs. thirty lacs. Eight flats are given on rent to Eight tenants, calculate standard rent for each flat per month assuming following:
 - i) Owner expects 8% return on cost of construction.
 - ii) Owner expects 5% Return on cost of land.
 - iii) Life of building is 75 years.
 - iv) Sinking fund to be created at 4% interest rate.
 - v) Annual repair and maintenance cost to be 1% of cost of construction.
 - vi) Other outgoings including taxes at 30% of net returns from the building.
 - Assume any other suitable additional data if required and mention it clearly.

Q.3	A)		What is depreciation? Explain various methods of depreciation.	(10)
	B)		What is outgoing? Explain usual types of outgoings. OR	
	B)		Explain various factors affecting cost of an item of work.	(6)
Q.4	A)		Explain purpose of specifications and types of specifications.	(6)
	B)	i)	Write in detail specification for <u>any one</u> of the following item. Specification for concrete 1:2:4.	
		ii)	Specification for brick work first sort.	(10)
Q.5	A)		Explain different types of contracts.	(6)
	B)		Explain various types of delays in a construction projects.	(5)
	C)		What is tender and what are different types of tenders.	
	C)		OR Explain essentials of a valid contract.	(5)
Q.6			Write short notes on <u>any four</u> of the following	
		i) ii) iii) iv) v)	Contingencies and work charged establishment Termination of contract Rules of deduction for plastering Information to be given in a tender notice Free hold and lease hold property	
		vi)	Provisional and prime cost items	(16)

*_*_*_*

Q. No. 1 (.fig. no.1)

College of Engineering, Pune Fiber Reinforced Cement Composites

ESE 2011-12

Class: .B.Tech.(CIVIL)	Date: 05/05/2012
Time: 2.00P. M to 5.00 P.M	Max. Marks: 50

Instructions: 1. All questions are compulsory

2. Each question carries equal marks.

- Q. 1 Explain in detail:-- The composition of Portland cement based microstructure plays a significant role for the properties of composite containing fibers.
- Q 2 What is the fracture mechanics approach to predict the strengths of FRCC.
- Q 3) What are the basic requirements of coarse aggregates to be used in the preparation of FRCC.
- Q 4) Explain in brief about the behavior under flexure of SIFCON.
- Q 5) Using Drop Weight test how the evaluation of impact resistance of polymeric fiberreinforced concrete can be done Explain in detail.
- Q 6) Discuss the long term performance of FRCC in regard to corrosion of steel fibers in detail.
- Q7) What is the test procedure to evaluate the contribution of fibers to drying shrinkage crack reduction.
- Q 8)Comment on creep and shrinkage of GFRC.
- Q 9) What are the mechanical properties of thin sheet products.
- Q 10)Explain the importance of FRCC in Beam Column connection.