COLLEGE OF ENGINEERING, PUNE - 5 (An Autonomous Institute of Government of Maharashtra)

End Semester Examination MT 433 - Wire Technology

Programme: B.Tech. (Metallurgical Engineering) Duration: 3 Hours Max. Marks: 50 Instructions: 1) Answer all questions. 2) Draw neat figures wherever required. 3) Figures to the right indicate full marks. 4) Assume suitable data if required.	
3) Figures to the right indicate a control of the right indica	
suitable data if required	
Q.1 (a) State the purposes of heat treating steel wires for different applications.	
diameter wire of 0.2 mm diameter is to be produced from 5.5 mm including in line heat treatment and post processing. Suggest the parameters to be controlled for achieving high strength in the final product.	5
microstructure and strength in a steel wire after patenting heat treatment? State different alternatives to lead bath for patenting	
Q.2 (a) 'Strain Ratio' (SR) is defined as ratio A ₀ /A _f , where A ₀ is original cross section area and A _f is final cross section area of wire. Derive the expression wire is d _f .	í
Calculate a 3-die, uniform reduction per pass drafting schedule starting with 4.50 mm wire rod and ending with 3.3 mm wire.	
(b) What are the reasons of 'center-burst' of 'chevron formation' occurring during wire drawing?6	
(c) It is suggested that the approach zone length (L) should be about twice that of the actual deformation zone (l). Why?	
(d) State the von Mises' criterion for effective stress (σ_{eff}) for yielding to occur under multi-axial stress conditions. For the same criterion, how are the yield strengths in pure shear (τ_y) and pure tension (σ_y) related?	
(e) State the Siebel's formula for drawing force during wire drawing2	

Q.3 (a)	 Write Short notes on <u>any two</u> of the following 1. 'G-casting' process 2. Carrier Coatings of wire rods 3. Model and parameters for reducing lamellar spacing (S) in pearlite 	
(b)		5
(c)	Compare the properties and conditions of using the calcium-stearate and sodium-stearate dry lubricants.	5
(d)	What do mean by 'scale' on a wire rod? State the differences between pickling with hydrochloric acid (HCl) and sulfuric acid (H ₂ SO ₄).	5

COLLEGE OF ENGINEERING, PUNE END SEMESTER EXAM

Fracture mechanics and Material Joining B. Tech (SAND, Metallurgy)

Year: 2011-12	Metallurgy)
Duration: 3 hours	Date: 12 /05/12
Instructions:	Max.Marks: 50
1) Answer all the questions.	
2) Figures to the right indicate full marks	
3) Draw neat figures wherever required.	
meter required.	
 Q.1 a) With the help of neat sketches describe a joining process. State its process paramete i. Diffusion welding ii Thermit welding iii. Friction stir welding b) What are the basic molten metal transfer c) Define heat source efficiency. 	r modes in GMAW?6
	2
 Q.2 a) State the assumptions used by Rosenthal heat flow during welding. State the Rose and the meaning of each term in the equal b) Answer any two the following: What is the main reason of distortion in valistortion possible and explain any one. What are the types of fluxes used in weld prefer using an oxidizing or reducing flar carbon steels? Why or why not? Explain the Epitaxial growth pattern four 	veldments? What are the types of ing? What is basicity Index? Do you me in gas welding of high
Q.3 a) What are the differences and the	
Q.3 a) What are the differences and their effects be solidification?	between casting and welding
b) In which alloys do the following weld:	oroblems occur? Explain 4
and give its cause and remedies: (any two)	
1. Kinte fine attack	6
ii. Hydrogen cracking	
iii. Solidification cracking	
Q.4 a) How fracture toughness can be experimentalb) State the difference between designing mach strength of materials approach and fracture me	echanics approach.
Q.5. a) Explain the terms: critical strain and	
Q.5. a) Explain the terms: critical strain energy releatoughness.	se rate and plain strain fracture
b) Show the effect of specimen thickness on the s	6
a specimen unexitess on the s	stress intensity factor and explain
	-4

College of Engineering, Pune 5. (An autonomous Institute of Government of Maharashtra, Pune 411005).

End Semester Examination

B. Tech. (Metallurgical Engineering)

(MT 411) Ceramic Engineering

Tin	ne: 3 Hours]	100
1) 2) 3)	All Question are compulsory. Neat diagrams must be drawn wherever necessary. Figures to the right indicate full marks.	
	 Give to the point answers (any five): (a) What is the purpose of adding oxide dopants such as Y₂O₃, CeO₂ or MgO to zirconia? (b) What do you understand by transformation toughening of zirconia? (c) Can the fracture toughness be estimated using misral and an arrespondent. 	[10]
	(a) Compare the fracture toughness values of metals, ceramics and polymers.(e) What is the necessary condition for densification to occur?(f) What types of changes are likely to occur in ceramics during sintering?(g) What is Weibull modulus?	
(a)	Discuss the various strengthening and toughening mechanisms useful in the design of creep resistant ceramics.	[5]
(b)	Write possible defect reactions and corresponding mass action expressions when possible for (any 5): (i) Oxygen from atmosphere going interstitial (ii) Schottky defect in M ₂ O ₃ (iii) Metal loss from ZnO (iv) Frenkel defect in A1 ₂ O ₃ (v) Dissolution of MgO in A1 ₂ O ₃ (vi) Dissolution of Li ₂ O in NiO	[5]
	Write the principles and mechanisms involved in the manufacturing of ceramic powders by following methods (any 02): i. Sol-gel method ii. Precipitation method iii. Hydrothermal synthesis	[10]
(a)	Discuss the role played by various oxide additives used in glass manufacturing	[5]
(b)		[5]
(a)	Solve any 2 of the following:	
(b)		[5] [5]
(c)	Discuss the mechanism of sintering of alumina with/without sintering aid.	[5]
	(a) (b) (a) (b)	 2) Neat diagrams must be drawn wherever necessary. 3) Figures to the right indicate full marks. 4) Use of non-programmable electronic pocket calculator is permitted. Give to the point answers (any five): (a) What is the purpose of adding oxide dopants such as Y₂O₃, CeO₂ or MgO to zirconia? (b) What do you understand by transformation toughening of zirconia? (c) Can the fracture toughness be estimated using microhardness tester? (d) Compare the fracture toughness values of metals, ceramics and polymers. (e) What is the necessary condition for densification to occur? (f) What types of changes are likely to occur in ceramics during sintering? (g) What is Weibull modulus? (a) Discuss the various strengthening and toughening mechanisms useful in the design of creep resistant ceramics. (b) Write possible defect reactions and corresponding mass action expressions when possible for (any 5): (i) Oxygen from atmosphere going interstitial (ii) Schottky defect in M₂O₃ (iii) Metal loss from ZnO (iv) Frenkel defect in A1₂O₃ (v) Dissolution of MgO in A1₂O₃ (vi) Dissolution of MgO in NiO Write the principles and mechanisms involved in the manufacturing of ceramic powders by following methods (any 02): i. Sol-gel method ii. Precipitation method iii. Precipitation method iii. Precipitation method iii. Hydrothermal synthesis (a) Discuss the role played by various oxide additives used in glass manufacturing. (b) What is slip casting? Discuss the important processing parameters involved therein. Solve any 2 of the following: (a) Illustrate the three main stages of sintering. (b) Discuss the various mechanisms by which grain growth occurs during sintering.

COLLEGE OF ENGINEERING, PUNE - 5.

(An Autonomous Institute of Government of Maharashtra)

End-Semester Examination (2011-12)

B.Tech. (Metallurgy)

MT 424: Surface Modification

Date: 5th May 2012

Time allowed: 3 hrs

Max. Marks: 50

Instructions to students:

- i) There are no sections. ii) Numbers to the right indicates full marks.
- iii) Draw sketches wherever necessary. iv) All questions are compulsory.
- v) Exchange of calculator not allowed.

Q.1	What is Chemical Vapor Deposition (CVD)? Compare Thermal CVD and plasma CVD.	Marks
Q.2	Discuss suitable surface treatment (s) for an automobile piston ring (s).	
Q.3	What is the role of aluminum:	

What is the role of aluminum in zinc coating? Discuss with suitable example how the surface properties vary with aluminum content in zinc coating? 10

Consider the gas carburizing of a gear of AISI 1020 steel at 927°C. Calculate Q.4 time in minutes necessary to increase the carbon content to 0.40% at 0.5 mm below the surface. Assume that the carbon content at the surface is 0.90% and that the steel has a nominal carbon content of 0.20%. ($D_{927^{\circ}C} = 1.28 \times 10^{-11} \text{ m}^2/\text{s}$).

Erf Z	Z
0.7112	0.75
0.7143	X
0.7421	0.80

Q.5

10

10

10

A silicon wafer with a series of windows in an oxide layer is undergoing ion implantation with a beam of boron ions at 100 keV. If the beam dose is 3.0×10^{15} cm⁻² and projected straggle range is 900 Å, what is the peak concentration of the boron ions at the projected range?

5

b) Discuss semiconductor lasers.

5

--End--

All the best