B. Tech (Civil) [Final] Structural Design -III

(CE 402)

(END Semester Examination)

Duration: 3 Hrs.

Date: 27/11/2012

Max. Marks: 50

Instructions to candidate:

1) All questions are compulsory.

2) Assume suitable data, if necessary.

3) Use of non-programmable electronic calculators is allowed.

Use of IS code 456 –2000, IS: 1893, 3370 is permitted.

Q.1

- a) Explain the behavior of reinforced concrete and prestressed concrete beam with reference to efficiency of material used, shear strength, serviceability and economy. Please avoid vague statement.
- b) What are the shortcomings of prestressed concrete over the steel or reinforced concrete structure?
- .c) What are the different stages of loading in prestressed concrete?
- d) What are IS recommendations in respect of depth of various types of beams /slabs based on stiffness considerations?
- e) A cantilever slab of 3 m span is subjected to live load 3 kN/sq.m and located in *seismic zone V*, design the slab as per codal provisions.

[10]

Q.2

A post tensioned prestressed concrete beam is supported on two supports, A and B at 10 m apart with an overhang of 5 m beyond support B. It is subjected to dead load [excluding self wt] 10 kN/m and live load of 5 kN/m. The specified 28-days cube strength is 50 N/sq.mm. Assume ultimate tensile stress in prestressing steel is equal to 1600 N/sq.mm & prestress loss ratio = 0.80. Determine the cross section [T section] and profile of the prestressing cable. Sketch the cable profile making the eccentricity of cable at the support and free end.

(10)

Q.3

Determine the loss of prestress due to elastic shortening in pre-tensioned beam whose cross section is as below.

Unsymmetrical I section:

Top flange = $1000 \text{ mm} \times 150 \text{ mm}$

B. Tech Civil -November 2012 ESE

Web = 150 mm x 800 mm

Bottom flange = 500 mm x 150 mm

Overall Depth = 1100 mm

Four cables ,each of 12/7 with initial prestress of 1100 N/sq.mm at a constant eccentricity are located at 100 mm , 200 mm , 300 mm and 1000 mm from soffit of the beam .

If above beam is post-tensioned and cables are tensioned in sequence, find the loss of prestress due to elastic shortening and stress in concrete at top and bottom fiber.

(10)

Q.4

Design a combined footing for three RC columns located at a distance 5.0 m c/c in a straight line.

- Column A = 900 mm x 900 mm, Axial load = 3000 kN, Moment due to seismic in each direction = 150 kN-m
- Column B = 600 mm x 600 mm, Axial load = 1600 kN. Moment due to seismic in each direction = 100 kN-m
- Column C = 600 mm x 600 mm Axial load of 1600 kN. Moment due to seismic in each direction = 100 kN-m
- Column **C** is touching the property line on one side.
- Use SBC of soil = 90 kN/sq.m and M-30 and Fe 500.
- Show the details of reinforcement.

[10]

Q. 5

A water tank is resting on ground and it has large capacity.

Internal Dimension = 100 m x 60 m open to sky.

Water depth in tank = 4.0 m

Free board = 0.5 m

SBC of soil = 500 kN/sq.m

Use IS: 3370, M-30 and Fe415.

Your design calculation should cover the following,

- [a] Design of vertical wall only
- [b] The details of reinforcement in wall.

If quality of concrete differs by 40 %, then redesign the section.