Computer

College of Engineering, Pune - 05 End Semester Exam - November 2012

Final Year B. Tech. (Computer Engineering) (CT-404) Advanced Computer Architecture

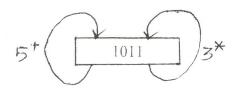
Duration – 03 Hrs.

Maximum Marks: 100

Date: 27th November 2012

Instructions:

1. Figures to right indicate full marks.


- 2. Draw neat diagrams at appropriate places.
- 3. Assume suitable data wherever necessary and state appropriately.

Q.1 Solve the following.

20

- A. What is instruction level parallelism? Discuss the limitations of instruction level parallelism.
- B. What is the role of branch target buffer in dynamic branch prediction?
- C. What is the serious problem given by fixed load speedup model? How it can be removed?
- D. Which buffers do we use in prefetch buffer mechanism? What is difference between sequential buffer and target buffer?
- E. a. Let x = (2, 5, 8, 7) and y = (9, 3, 6, 4). What result it will yield if we use compare instruction?
 - b. Let x = (1, 2, 3, 4, 5, 6, 7, 8) and y = (1, 0, 1, 0, 1, 0, 1, 0). What result it will yield if we use compress instruction?
 - c. Let x = (1, 2, 4, 8), y = (3, 5, 6, 7) and B = (1, 1, 0, 1, 0, 0, 0, 1). What result it will yield if we use merge instruction?
- F. Which are the parameters that characterize a SIMD computer?
- G. Let α be the percentage of a program code which can be executed simultaneously by n processors in computer system. Assume that the remaining code must be executed sequentially by a single processor. Each processor has a execution rate of x MIPS and all other processors are assumed equally capable.
 - a. Derive an expression for the effective MIPS rate when using a system for exclusive execution of this program, in terms of the parameters n, α , x.
 - b. If n=16 and x=400 MIPS, determine the value of α which will yield a system performance of 5000 MIPS.
- H. Which are the reasons that causes inconsistencies in cache?
- I. Discuss processor characteristics for multiprocessing.
- J. Differentiate between synchronous and asynchronous message passing.
- Q. 2 A. List different latency hiding techniques. Briefly explain the prefetching technique along with its advantages.

- Discuss Tomasulo's algorithm for dynamic instruction scheduling.
- 4 C. Consider the following state transition diagram with MAL=3. How can 8 we reduce the MAL by inserting delays?

- Q. 3 A. For following sequence of four vector instructions, explain the process of pipeline chaining.

8

- $V_0 \leftarrow Memory \quad (Memory Fetch)$ $V_2 \leftarrow V_0 + V_1$ (Vector Add)
- $V_3 \leftarrow V_2 \le A_3$ (Left Shift)
- $V_5 \leftarrow V_3 \wedge V_4$ (Logical Product)
- Which are the problems of asynchrony? How does the distributed caching В. overcome this problem?
- C. Explain parallelism profile in a program. 4
- Q. 4 A. Explain shared-memory model. What do you mean by incremental 8 parallelism? How shared-memory model differs from message passing model?
 - В. Write down basic concept of directory based cache coherence scheme. 8 List the states in full mapped directories with diagrams. Which is the overhead associated with full mapped directories?
 - C. Discuss a cube interconnection network for SIMD architecture. 4
- O. 5 Α. What do you mean by a communicative group? Discuss collective 8 operations in MPI.
 - Discuss the cache coherence problem. How does the Snoopy bus protocol B. 8 ensure the coherence?
 - C. Explain working of OpenMP standard. 4