ERTC

COLLEGE OF ENGINEERING, PUNE-5.

(An Autonomous Institute of Government of Maharashtra)

END SEMISTER EXAMINATION (2012-2013)

-		~ ~	^		1122
1	otal	No	of	Question	c. 5
1	Oun	TAO	UI	Question	D. J

Total No of Pages:2

Final Year B.Tech. (Electronics and Telecommunication)

Subject: (ET411-2) Elective: RISC Microcontrollers and DSP Processors

[Time: 3 Hours] [Max. Marks: 50]

Year: 2012-13 (November 2012)

9										
п		. 4		10.5		4			4	
	n	CT	Mal.	1.01	 me	TO	CON	10	ates:	

- 1) All questions compulsory. 2) Neat Diagrams must be drawn wherever necessary.
- 3) Assume suitable data if necessary. 4) Figures to the right indicate full marks.
- 5) Use of non-programmable electronic calculator is allowed.
- Q.1 (a) How efficiency of Reduced Instruction Set Computer is increased by instruction 4 pipelining? Illustrate with four stage pipeline.
 - (b) Specify and elaborate following issues the designer should handle when porting the C code onto ARM platform.
 - i) Inline assembly
 - ii) The volatile keyword
 - (c) Draw a typical AMBA –based microcontroller system. What are the significant feature 3 implemented in AMBA AHB for high performance, high clock frequency systems?
- Q.2 (a) Present the scheme in detail of a prioritized simple interrupt handler handling prioritized interrupts on ARM processor.
 - (b) Write a C code to divide 32 bit unsigned number by another 32 bit unsigned number. 6
 Write complied assembly code for above C program.
 If divisor needs to be used several times, how can the process of division be optimized?

Justify the same with suitable mathematical analysis.

- Q.3 Illustrate the processor operations using examples with pre and post conditions, describing registers and memory before and after the instructions are executed.
- 10

- i)STMED sp!, $\{r1,r2\}$
- ii) SMLATB r4,r1,r2,r3
- iii)MPYHL.M1 A4,A5,A6
- iv)LDW.D1*A0++[2],A1
- v)MVK.S1 0X1223,A1
- Q.4(a) Present the details of following special addressing modes that permit single 5 word/instruction format and thereby speed up the execution in P-DSPs.
 - i)Memory -mapped Addressing
 - ii)Indirect Addressing
 - iii) Bit Reversed Addressing mode
 - (b) Write assembly code in TMS320C6x processor for convolution of two sequences $5 \times (n),h(m)$ of length N and M respectively.

For N=7 and M=5 and x(n), h(m) are given by

- x(n)=1, 2, 2, 2, 2, 2, 1 where $0 \le n \le 6$
- h(m) = 1,2,2,2,1 where $0 \le m \le 4$
- Q.5(a) Name different units in the central processing unit of 'C6x device and draw the various 5 fields of Control Status Register (CSR) of 'C6x.
 - Write functions of fields SAT, PCC, GIE and Revision ID in CSR.
 - (b) Discuss various steps involved to achieve design of FPGA based systems with the help 5 of CAD tools.

* * *