College of Engineering, Pune

(Final Year B. Tech)- (Mechanical)

(Subject Code)- ME 405-4 (Energy Systems)

Date- 1 December 2012 Academic Year: 2012- 13 Timing: 3 hrs Max. Marks: 50

End semester Examination

Instructions:

1. Attempt all questions

2. Figures to the right indicate full marks

3. Use of non-programmable calculator is permitted

4. Make suitable assumptions if necessary

Q. 1	A.	Draw a neat labeled sketch of a Flat plate collector showing its	5			
		internal structure (No Description)				
	В	Explain with a neat schematic arrangement how flat plate	5			
	collectors are tested and characterized?					
Q2.	D	Discuss different modes of tracking in Concentrating Collectors				
		with respect to their arrangement, efficacy, technical feasibility				
	·	and economic viability?				
	A	Explain the following	5			
		i. Declination				
		ii. Solar Time				
		iii. Heat removal Factor				
		iv. Tilt Factor				
		v. Solar Fraction				
Q3.	A	Describe mechanisms of shading excess wind in horizontal axis				
	,	wind machines				
	C	A wind turbine with rotor diameter 8 m is installed at a certain				
		location. The wind data for this location indicates Raleigh Winds				
		with shape factor 2 and scale factor 8.Determine				
		i. Average wind speed	1			
		ii. No. of hours, wind speed will be below cut in speed of 8				
		m/s over a year	1			
		iii. No. of hours, wind speed will be above cut off speed of 18				
		m/s over a year	1			
	19 7 2	iv. No. of hours wind speed will generate power?	1			
¥		v. If rated wind speed is 11m/s., how much energy in kWh the	2			
		wind turbine will generate? (Power Coefficient of the				
		turbine is 75% of the Betz limit)				
		vi. What is the capacity factor for the location?	1			
Q4.		Design a complete solar photovoltaic system with an array of SPV	10			
-		modules, their configuration, lay out (parallel/ series), charge				

	T		1	
		controller, battery type and size, inverter size, etc. to cater power		
	requirement for an ATM room.			
	12 hours of autonomy per day is expected from the PV circuit			
	Assume connected load of the ATM to be 1.3 kW with a divers			
	factor of 0.7. Take			
	Inverter efficiency - 90%			
		Battery efficiency - 80%		
		Battery bank voltage – 48 V		
		Nominal Battery voltage – 12 V		
		Average solar radiation – 600 W/m ²	*	
		Average peak sunshine hours per day – 5.5 hrs.		
		Average ambient temperature – 32°C		
		Average values of solar data are applicable for 250 days in a year		
		Nominal operating cell temperature – 45°C		
		Select panels from Table 1.Make suitable assumptions if needed.		
		Draw a neat lay out of the system		
		Determine kWh generated by the array annually?		
		What is SPP of the system if electricity rate is Rs. 12 per kWh		
Q5.	A	Explain briefly the routes of biomass energy conversion	3	
	В	Describe with a neat sketch updraft gasifier. Compare the same	4	
		with down draft gasifier.		
	С	Explain with a neat sketch a basic thermionic generator	3	
			_	

Table 1. Solar photovoltaic panel specifications and Brands

	DD G1 11 G1 TT							
	BP	Shell	Sharp	Kyocera				
No. of Cells per	72	42	72	36				
module			2	e u				
Rated power at	150	40	165	120				
STC, W								
Voc, V	42.8	23.3	43.1	21.5				
Isc, A	4.75	2.68	5.46	7.45				
Width x Length x	1587x790x50	1293x329x54	1587x790x50	1425x652x52				
height mm								
Voltage at	34	16.6	34.6	16.9				
maximum power, V								
Current at Rated	4.45	2.41	4.77	7.1				
power								
Module cost Rs.	5000	1800	6000	4000				
