COLLEGE OF ENGINEERING PUNE

Mid Semester Examination for First term 2013-14 Subject code: CE -407

Name of subject: Environmental Engineering -II

Programme: Final Year B. Tech. (Civil)

Year: 2013-14

Date:

/11/2013

Duration: 03 hrs

Max. Marks: 50

Instructions: 1 Attempt any five questions

2 Solve the whole question at a time and in a sequence

Q No.1 A	Draw flow diagrams of wastewater treatment plant	05
Q 1.002	1 Activated sludge process	
	2 Trickling filter	
	3 Oxidation pond	
В	Explain aerobic and anaerobic Biological treatment of wastewater	05
Q No 2 A	A COD test is performed as per standard methods with potassium di chromate as an	05
	oxidising agent and following results are obtained. Calculate C O D and write	
	interpretation of test results	
	Standardisation 25 ml ferrous ammonium sulphate is required for 10 ml of	
	potassium di chromate of 0.25 N	
	Sample digestion Volumes of ferrous ammonium sulphate required for 20 ml Blank	
	and 20 ml sample (dilution ratio1: 50) are 25 ml and 24 ml respectively	1
В	Enlist various physical, Chemical and Biological characteristics of waste water.	05
	Explain the significance of B O D and COD tests.	
Q No 3 A	Calculate the velocity and discharge in a circular sewer having diameter 1 mt, laid at	05
	a gradient 1 in 500. The sewer runs partially full at $(d/D) = 0.5$. Use Manning's	
	formula with $n = 0.01$	
В	Enlist various appurtenances used in the sewerage system. Draw a sketch of a drop	05
	manhole and explain its purpose	-
Q No 4 A	What is the necessity of velocity control device in grit chamber? Draw a neat labeled	05
-	sketch of one such device and explain its concept.	
В	An average operating data for conventional ASP design is as below	05
	Wastewater flow = 35000 m3 per day	
	Volume of aeration tank = 12800 m3	
	Influent B O D = So= 180 mg /lit	
	Effluent B O D = $Se = 20 \text{ mg/lit}$	
	Max. Growth Yield Coefficient $Y = 0.6$	
	Endogenous respiration rate constant Kd = 0.05/day	
	MLSS = X = 3000 mg/lit	
	Effluent suspended solids = 30 mg /lit	
	Waste sludge suspended solids 12000 mg/lit	
	Work out the hydraulic retention time, F/M ratio, efficiency for the activated sludge	
	tank, Mean cell residence time and recirculation ratio. Compare results with standard	
	characteristics of conventional ASP	

		T
Q No 5 A	Enlist low cost wastewater treatment techniques and explain principle of oxidation pond	05
В	Design a facultative stabilization pond with following data 1- Population to be served 5,000 2- Sewage flow 140 lpcd 3- Location 22 ° North 4- Elevation 800 mt. above mean Sea Level 5- Mean Temperature during coldest month 30 ° C Max and 10 ° C min 6- Influent B O D = 120 mg/l 7- Desired B O D reduction = 90 % 8- B O D removal rate constant K = 0.1 per day (I S 5611) Photosynthetic Oxygen rate at 22 ° North = 237.5 kg/day/ha	05
Q No 6 A	Draw a neat plan, section of a septic tank. State circumstances under which it is used.	05
В	Explain merits and demerits of centralized and decentralized waste water treatment	05
Q No 7 A	Enlist stages in sludge treatment and Explain in details anaerobic sludge digestion	05
В	Draw a sketch and explain principle of UASB	05

у.