College of Engineering, Pune END SEMESTER EXAM Nov 2013 Final B. Tech

EE 413- Computer Algorithms

Day & Date-

Max. Marks-60

Timing -

Duration - 3 hours

Instructions:

- 1. Assume Data wherever necessary.
- 2. All Questions are Compulsory.
- 3. Figures and examples with proper explanation fetch full marks.

Q. 1 Solve any Two (2)

(a) Solve the following for the given Algorithms (below):

10

- (i) Introduce statements to increment *count* at all appropriate points in Algorithm given below.
- (ii) Simplify the resulting algorithm by eliminating statements. The simplified algorithm should compute the same value for *count* as computed by the algorithm of Part (i)
- (iii) What is the exact value of *count* when the algorithm terminates? You may assume that the initial value of *count* is 0.
- (iv) Obtain the step count for following Algorithm using the frequency method. Clearly show the **step count table**.

(b) Find a minimum-cost path from s to t in the multistage graph of Figure shown below. Do this first using forward approach and then using the backward approach.

(c) Solve the recurrence relation

$$T(n) = \begin{cases} T(1) & n = 1 \\ a T(\frac{n}{b}) + f(n) & n > 1 \end{cases}$$

10

for the following choices of a, b and f(n) (c being constant).

i.
$$a = 1$$
, $b = 2$, and $f(n) = cn$.

ii.
$$a = 5$$
, $b = 4$, and $f(n) = cn^2$

iii.
$$a = 28$$
, $b = 3$, and $f(n) = cn^3$

- (d) (i) Explain Tree Traversal Techniques, and write Algorithms for 06 these techniques.
 - (ii) Explain Graph Coloring Problem. How an optimum solution can be generated using Backtracking Method?

Q. 2 Solve any Four (4)

- (a) Find an optimal solution to the knapsack instance n = 9, m = 0420, $(p_1, p_2, ..., p_9) = (4, 6, 16, 5, 10, 12, 2, 7, 8)$, and $(w_1, w_2, ..., w_9) = (12, 16, 9, 10, 4, 6, 2, 15, 3)$.
- (b) What is the solution generated by Job Scheduling (JS) Algorithm **04** when n = 7, $(p_1, p_2, ..., p_7) = (3, 5, 20, 18, 1, 6, 30)$ and $(d_1, d_2, ..., d_7) = (1, 3, 4, 3, 2, 1, 2)$?
- (c) A sorting method is said to be stable if at the end of the method, identical elements occur in the same order as in the original unsorted set. Is merge a stable sorting method? Explain.

- (d) Explain All-Pairs Shortest Paths problem. Solve it using Dynamic 04 Programming Technique.
- (e) Show how *QuickSort* sorts the following sequence of keys: 1, 1, 1, 1, 1, 1 and 5, 5, 8, 3, 4, 3, 2.

Q. 3 Solve any Three (3)

- (a) You are given a set of n jobs. Associated with each job i is a processing time t_i , and a deadline d_i , by which it must be completed. A feasible schedule is a permutation of the jobs such that if the jobs are processed in that order, then each job finishes by its deadline. Define a greedy schedule to be one in which the jobs are processed in non-decreasing order of deadlines. Show that if there exists a feasible schedule, then all greedy schedules are feasible.
- (b) Explain Tree Traversal Techniques, and write Algorithms for these techniques.
- (c) Explain the Algorithm for Finding the Maximum and Minimum 08 using Divide and Conquer techniques. Show Time and Space complexity.
- (d) If k is a nonnegative constant, then prove that the recurrence $T(n) = \begin{cases} k & n = 1\\ 3T(n/2) + kn & n > 1 \end{cases}$ has the following solution (for n a power of 2): $T(n) = 3kn^{\log_2 3} 2kn$