College of Engineering, Pune End Semester examination – Nov-Dec 2013

Branch: Electrical Engineering Semester: VII

EE5112: Wind & Solar

Date: Time	Darations	
Instru i) ii ii iv v)	 Use proper scales for figs wherever required Assume proper data if necessary Numbers to right indicate Marks to full or sub questions 	
Q.No	.1	(12)
a)	Obtain an expression for total solar radiation flux falling on tilted surface at any instant.	(04)
b)	Discuss following solar radiation measuring devices i. Pyranometer ii. pyrhelliometer.	(05)
a)	Determine the local apparent time corresponding to 15.45 Hrs (IST) for Ko (22°39'N and 88°27' E) on August 20, 2013. The equation for the time correct 5'.	olkata ion is (03)
Q. No	2)	(12)
a)	What is solar thermal collector? With neat labelled diagram discuss in functioning of each component of liquid flat plate collector.	brief (05)
b)	Discuss with the aid of block diagram the schemes employed for solar water pun system	nping (04)
c)	OR With neat sketch distinguish between various solar thermal collectors	(04)
d)	Estimate the collector efficiency of a solar kiln having kiln temperature surrounding temperature $36^{o}C$, area of the collector surface $25X300X300~mm$ the radiation intensity $840~W/m^{2}$ and $960~W/m^{2}$	60°C n² for (03)

a)	Draw an equivalent circuit of a solar cell and deduce the relation for Voc (05)	,)		
b)	Estimate the maximum power developed and efficiency of a solar cell hav following parameters. Voc=0.4 volts, Short circuit current density=500 mA/Cm ² . factor =40%. The effective area of the cell is 4 Cm ² under an illumination of 0.6 S What happens if area is doubled.	fil		
c)	Describe MPPT, and explain reference cell based algorithm for MPPT.	05)		
Q. No 4)				
a)	From basic thermodynamics deduce the necessary relationship between incom wind velocity and optimum exit velocity to derive maximum power.	ing (5)		
b)	A windmill with multi blade rotor lifts 3.03 m ³ / hr of water through a head of 281 when the wind speed is 3.3m/s. calculate the power coefficient for a rotor diameter 4.5 mtrs with transmission efficiency of 0.95 and pump efficiency of 0.75.			
c) i. ii. iii.	A NEG Micon 1000/54 wind turbine (1000-kW rated power, 54 mtr. Diameter) to cut -in wind speed of 4 m/s, rated wind speed 14 m/s, and a furling wind speed 25 m/s. If this machine is located in Rayleigh wind with an average speed of 10 m find the following: How many h/yr is the wind below the cut-in wind speed? How many h1yr will the turbine be shut down due to excessive winds? How many kWh/yr will be generated when the machine is running at rated power?	0		
Q. No.	5)	2)		
a)	Explain the basic integration issues faced by wind power system based on requirements of consumer and wind form operators. OR	he		
b)	Describe briefly power control topologies of following wind turbines;			
	i) Fixed speed wind turbineii) Variable speed wind turbine			

(12)

Q.No.3)