COLLEGE OF ENGINEERING, PUNE

Mechanical Engineering Department

Class: Final Year B. Tech. (Mech.),

End Semester Examination, November 2013

Subject: Energy Conservation and Management

Maximum Marks: 60

Instructions:

- 1. Attempt all question
- 2. Figures to the right indicate full marks
- 3. Use of non-programmable calculator is permitted
- **4.** Make suitable assumptions if necessary
- 5. Take latent heat of evaporation of water at atmospheric pressure to be 2200kJ/kg for all calculations

	for all calculations	
Q1.A	In 2012 India consumed 230 Mtoe of crude oil with an import dependence of 77%. In	
	2012 average crude oil prices were 103 USD/barrel. In 2011, the average exchange rate	
	for USD was 53 Rs. The API gravity of the imported oil has been 37°	
74	In 2013, the consumption of crude oil increased by 1.5% whiles the import dependence	
	increased by 2%. Crude oil import expenses increased by 24.5 %. In 2013, the average	
	exchange rate for USD was 59 Rs. The API gravity of the imported oil has been 37°	
	1. What is cost of crude imported by India in 2012 in Rs.?	5
	2. What is the average crude oil price in 2013 in USD?	
Q1.B	Write a brief note on Flow control strategies in centrifugal pumps	3
Q1.C	A batch of 150 kg of wet biscuits at 25°C is to be dried from 25% total moisture	4
	content to 3% total moisture content in 2 hrs. 9 such batches commence in a	
	day. The factory works 300 days in year.	
	Drying is done by an electric oven, what must be the rating of electric oven in	
	kW if its efficiency is 80%? What will be the annual electricity bill?	
	What is the cost of LPG consumed, if the drying is done using a LPG heater of	
	70% efficiency? Use following data	
	Electricity cost 9 Rs/unit	
	Calorific Value of LPG – 1.1 toe/ton	
	Cost of LPG – 75 Rs./kg	
Q2.A	As per the Kyoto Protocol Portugal is an Annex - A country. CO ₂ emissions of Portugal	
	were 36 Mt in 2008 and 15.2 Mt in 1990.	
	1. As per the Kyoto Protocol what is emission reduction target of Portugal for	1
	2008 in Mt?	
	2. A multinational company in Portugal has been given CO ₂ emission reduction	

	target that is X % of their national target in 2008. The multinational Company wishes to meet this target through CDM. The company has a capacity to invest 150 Million Euros (1 € = 87 Rs.) in Solar Photovoltaic Plants in India. By investing this amount how many CERs the company may earn in 2008? What is	5
	the corresponding value of X% contributed by the company in 2008?	
	Data for SPV plants in India	
	Capital cost: Rs. 9.5 Cr. per MW	
	Number of units generated annually: 15 Lakhs per MW installed capacity	
	Grid Intensity factor: 0.9 Tonnes of CO ₂ per MWh	
Q2. B	How to achieve energy conservation in lighting installations?	3
Q2. C	Why Electricity Act 2003 is considered to be revolutionary?	3
Q3.A	A500 kVA Diesel Generating (DG) set is installed in a commercial complex for	-
	emergency power. The data of the DG set is as follows.	
	Operating power factor: 0.8, Efficiency: 35%	
	Diesel properties: Calorific Value 42 MJ/kg, Specific Gravity 0.8, Cost 60 Rs./lit	
	Operation: 12 hrs per day for 300 days in year.	
	Capital Cost: Rs. 20,000/- per kVA, Life: 15 yrs, Expected discount rate: 22%	
	Take CRF = $\frac{d(1+d)^n}{(1+d)^{n-1}}$	
	1. Determine cost of electricity generated by DG set in Rs./kWh	3
	2. By taking at least 4 values of the fuel cost vis-à-vis 50 Rs./lit., 55 Rs./lit,	2
	65 Rs./lit and 70 Rs./lit Show how the cost of electricity varies with the fuel	2
	prices.	
	3. Utility electricity is available at Rs. 8 Rs./kWh. What is the subsidy on fuel	
	price required so that the cost of DG set power becomes equal to that of utility?	2
Q3.B	Capital cost of a heat treatment furnace is Rs. 80 lakhs and life 5 years. The	5
	discount rate for the company is 18%. By installing this furnace, the	
	constant annual cash flow predicted in each year is Rs. 25 Lakhs. The annual	
	maintenance cost in the first year is Rs. 50,000/- and increases by 15% in	
	each year. A depreciation of 33% is allowed on the investment of the	
	Y	
	furnaces for the first three years only. The income tax rate is 30%.	
	1. To break even the investment without taking the depreciation benefit into	
	account, at what cost the furnace should be sold at the end of five years?	
	2. With no consideration of break even and taking into account the	
	depreciation benefit, what will be the Profitability Index of the	
	investment?	
1		-
Q4.	Following data refers to a boiler in a confectionary plant.	

	Operation :24 hours a day for 300 days in year	
	Capital cost of the boiler: Rs.5 Crores	
	Life of the boiler: 25 yrs	
	Annual maintenance cost: 3% of the capital cost	
2	Expected discount rate: 16 %	
5	Fuel: Biomass briquettes of Gross Calorific Value, 17 MJ/kg	
	Price of the fuel: 16 Rs./kg	
	Fuel firing rate: 7 TPH	
	Boiler Surface area: 65 m ² , Boiler outer surface temperature: 58°C	
	Flue gas temperature: 288°C	
	Ultimate Analysis of the fuel by weight: Carbon 45%, Hydrogen 7%, Sulphur	
	0.5%, Oxygen 1.5%, Moisture 10%,	
	Ash Content 36%	
	Oxygen detected in the flue gas by volume: 8%	
	Ratio of fly ash to bottom ash: 3/11	
	Calorific value of Bottom Ash as well as Fly ash: 3.5 MJ/kg	
	Ambient air temperature: 30°C,	
	Specific humidity of ambient air: 14 gm/kg d.a.	
	Specific heat of flue gases: 1.005 kJ/kg-K	
	Specific heat of superheated steam: 1.88 kJ/kg-K	
	Combined convection and radiation heat transfer coefficient between boiler	
	surface and ambient: 25 W/m²-K	
	Determine: 1. Direct efficiency of the boiler?	
	2.Indirect Efficiency of the boiler	
	5. If feed water is available at 4 Rs. /lit what is the cost of steam	1
	generated in Rs./kg. Take the obtained value of indirect efficiency for this	
.5	calculation.	
	A certain process industry operates for 30 days a month. Table 1 shows list of	+
	machines and appliances, their rating, number of hours of operation and energy	
	consumed in kWh.	
	i. Draw a neat load curve of the Industry on single day basis?	2
	ii. Draw a neat load duration curve of the Industry on single day basis?	2
	What is connected load and Maximum demand?	1
	iv. What is Demand Factor, Daily Load factor and Diversity Factor?	2
	v. What is monthly electricity bill of the industry? (Refer tariff charges	2
	given in Table 2)	4

Table 1. Consumption of different machines in kWh

Sr.	Appliance/s and	Time,	0300	0600	0900	1200	1500	1800	2100
No.	Rating, kW	Hrs.	to						
		00 to	0600	0900	1200	1500	1800	2100	2400
		0300							
1	Total Fan and	3	3	6	15	15	12	10	6
	Lighting in the								
	Premises,								
	Rating 5 kW								
2	Central	20	22	40	45	38	45	45	20
	Compressor								
	FacilityRating,						8		
	15kW	d.							
3	Metal	0	0	35	- 60	60	60	60	60
į.	Presses,Rating	r u							
	20kW (Total)	2							
4	Material Handling	0	0	0	0	60	60	60	60
	cranes,								
	Rating20kW								
	(Total)								
5	Heating and drying	45	45	45	45	0	0	45	45
	ovens,Rating								
	15kW(Total)			2	,				

Table 2. Slabs for Monthly Electricity tariff

Consumption,	Tariff, Rs./kWh
kWh	
Up to 1000	6
Above 1000 and	7
up to 5000	
Above 5000 and	9
up to 20,000	
Above 20,000	12