COLLEGE OF ENGINEERING, PUNE - 5

(An Autonomous Institute of Government of Maharashtra)

Autumn Semester

End Semester Examination (MT401) Design and Selection of Materials

Programme: Final Year B.Tech. (Metallurgical Engineering)

Duration: 3 Hours

Year: 2013-14

Max. Marks: 60

Instructions:

1) Answer any five questions.

- 2) Draw neat figures wherever required.
- 3) Figures to the right indicate full marks.

4) Assume suitable data if required.

5) Use of non-programmable calculators is allowed.

- 6) Write clearly question numbers. In case a question is solved on different pages, indicate clearly the page number where remaining part of answer is continued.
- Q.1 Draw the material property chart of fracture toughness (K_{1C}) versus yield strength (σ_f) from the following data. Label the axes and materials appropriately.

Material	K_{1C} (MPa \sqrt{m})	σ_f , (MPa)
Epoxies	0.4 -2.22	36–71.7
Nylons (PA)	2.22-5.62	50-94.8
Butyl rubber	0.07-0.1	2-3
CFRP	6.1-88	550-1050
Tungsten carbide	2-3.8	3347-6833
Titanium alloys	14-120	250-1245
Cast irons	22-54	215-790
Stainless steels	62-280	170-1000

What do the unit slope lines with changing ratios of (K_{1C}/σ_f) indicate?

....8

....4

....4

- Q.2 (a) Using a flow chart explain the stages involved in design process. Explain how the nature of material data needed changes in every stage?
 - (b) What are the four main steps involved in the strategy for material selection? Explain the steps in not more than 3 lines each.6
- Q.3 (a) Write the 'need statements' for designing following objects
 - i. Kick lever of a motorcycle
 - ii. Valve of a four stoke engine
 - iii. Screw driver
 - iv. Steel rule
 - (b) Recommend suitable materials for slender, solid cylindrical legs of a table? Explain the process of selection sequentially. Given: Equation for mass of leg m

$$m = \left(\frac{4F}{\pi}\right)^{1/2} (L)^2 \left[\frac{\rho}{E^{1/2}}\right]$$

Equation for radius of leg, r

$$r = \left(\frac{4F}{\pi^3}\right)^{1/4} (L)^{1/2} \left[\frac{1}{E}\right]^{1/4}$$

		where, F is load on the leg, L is length of leg, ρ is density and E elastic modulus of the material. Indicate the material search region on elastic modulus-density chart.	6
Q.4	(a)	Flywheels are designed with any one of the requirements: i. storing maximum energy per unit weight or ii. storing maximum energy per unit volume Which of these requirements is applicable for a flywheel of an automobile engine? Derive the material indices for flywheels of these two requirements using following data. The flywheel has thickness t , outside radius R , mass m , volume V , density ρ , and angular velocity ω . The energy U stored in the flywheel is $U = \frac{1}{2}J\omega^2$	
		where 'polar moment of inertia' of the disk, $J=(\pi/2)\rho R^4 t$. The maximum principal stress σ_{max} in a spinning disk of uniform thickness is	
		$\sigma_{\rm max} \approx \frac{1}{2} \rho R^2 \omega^2$	6
	(b)	Write the design requirements for the following applications:	
		i. Heat sink for microchipsii. Light tie rodiii. Boating oar	
		In which case(s), the constraints are not coupled with objectives?	6
Q.5	(a)	State the different attributes used in selection of processes for manufacturing. Which process sounds to be the most flexible?	4
	(b)	What are the dangers of specifying high performance in terms of strength, precision and surface finish?	3
	(c)	What are the different inputs to a cost model? Which of these inputs are taken as variable costs and overhead costs at the beginning of a setup?	3
Q.6	(a)	Draw a typical graph showing relationship between relative cost per component and the number of components produced. When do the tooling costs and material costs dominate?	4
	(b)	How are the materials selected quantitatively for an application by using 'weighted property method'? Draw a flow chart for the stages.	3
	(c)	What do you understand by 'superalloy'? Give some applications of nickel base superalloys.	3
		-@-@-	