

COLLEGE OF ENGINEERING, PUNE

(An Autonomous Institute of Government of Maharashtra.) SHIVAJI NAGAR, PUNE - 411 005

END Semester Examination

IS-501-28, MA(ILE)-14001, DE-09023- Linear Algebra

Course Name: B.Tech/M.Tech.			Branch Name: All branches	
Semes	ter N	ame: V & VII (UG) / I (PG)		
Year:	201	4 -2015		Max.Marks:60
Duratio	n: 2 l	Hours Time:- 2 p.m5 p.m.		Date:20-Nov-2014
Duranc	11. 5 1	Tours Time. 2 p.m. o p.m.		
Instructions:			MIS No.	
	3.4.5.	Mobile phones and programmable calculators are strictly prohibited. Writing anything on question paper is not allowed. Exchange/Sharing of anything like stationery, calculator is not allowed. Assume suitable data if necessary. Write your Seat Number on Question Paper		
		Q.1 Solve the following system u	using Doolittle's method (LU decomposition)	. [5]
			2x + y + z = 5	
			4x - 6y = -2	
			-2x + 7y + 2z = 9	
		Q.2, Solve the following system approximation (0,0,0).	by Gauss-Seidel method (up to 4 iterations):	starting with initial [6]
			8x + y - z = 8	
			x - 7y + 2z = -4	
			2x + y + 9z = 12	
	5		(λ), the corresponding eigenvector and the	

following matrix by Power method. Start with $x_0 = [1, 1, 1]^t$ and up to x_4

$$A = \left[\begin{array}{rrr} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{array} \right]$$

Q.4 Fit a parabola to the given points (x, y) by the method of least squares. [5] (-1, 3), (1,1), (2,2), (3,6).

Q.5 Find a particular solution of the following system of differential equations using method of diagonalization, given that $y_1(0) = 3$ and $y_2(0) = 1$. [6]

$$y'_1 = 4y_2$$

 $y'_2 = 4y_1 + 2 - 16t^2$

- Q.6 Find the characteristic and minimal polynomials of the matrix $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$. [4]
- $\mathbf{Q.7}$ Suppose the characteristic and minimal polynomials of an operator T are $ch(T) = (\lambda - 3)^4(\lambda - 1)^5$ and $m(T) = (\lambda - 3)^2(\lambda - 1)^3$ respectively. Determine all possible Jordan canonical forms of T.
- **Q.8** (a) Let V be a vector space over a field K and $T: V \to V$ be a linear operator on V. Let W be the set of all fixed points of T i.e. $W = \{x \in V : T(x) = x\}$. Show that W is a subspace of V.
 - (b) Let $V = \mathbb{C}$ and $K = \mathbb{R}$. Let $B = \{1, i\}$ be an ordered basis for \mathbb{C} over \mathbb{R} . Let $T : \mathbb{C} \to \mathbb{C}$ be a linear operator whose matrix relative to the pair B, B is $A = \begin{bmatrix} 3 & 1 \\ 4 & 3 \end{bmatrix}$. Find a basis for the set of all fixed points of T.
- **Q.9** Let V be a finite dimensional vector space over a field K and $T: V \to V$ be a linear operator on V. Let $A = [T]_{B \to B}$ be the matrix of T relative to some ordered basis B of V. Then we define the determinant of T as det(T) = det(A).

Now, let V be the vector space of all real valued functions defined on \mathbb{R} having an ordered basis $B = \{\sin t, \cos t\}$. Find the determinant of the differential operator $D: V \to V$ defined by $D(f(t)) = \frac{df}{dt}$. [4]

Q.10 Let S^3 denote the vector space of all 3×3 real symmetric matrices. Assume that $\langle P, Q \rangle =$ $\operatorname{tr}(PQ)$ is an inner product on S^3 (Recall that $\operatorname{tr}(A) = \operatorname{trace}$ of a square matrix $A_{n \times n}$ is the sum of its diagonal entries= $a_{11} + \cdots + a_{nn}$).

Let
$$P = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
 and $Q = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 0 \end{bmatrix}$.

Find an orthonormal basis for the subspace Span(P, Q) of S^3 .

[6]

- Q.11 Let V be a finite dimensional vector space and T a linear operator on V. Suppose that $\operatorname{rank}(T^2) = \operatorname{rank}(T)$. Prove that $\operatorname{range}(T) \cap \operatorname{nullspace}(T) = \{0\}$. [4]
- Q.12 State and prove rank-nullity theorem for linear transformations.

OR

State and prove Cauchy-Schwartz inequality.

[6]