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Q.1 Solve the following system using Doolittle’s method (LU decomposition). [5]
2c+y+2z = 5
dr —6y = —2
—2c+Ty+2z = 9

Q.2, Solve the following system by Gauss-Seidel method (up to 4 iterations) starting with initial
approximation (0,0,0). 6]

Bz +y—2 = 8
z—Ty+ 2z —4
20 +y+9z = 12

Il

Q.3 Find the largest eigenvalue (X), the corresponding eigenvector and the error € of A for the

following matrix by Power method. Start with 2o = [1, 1, 1] and up to z4. (6]
[ 2 2 1 —i
A= i 1 3 1
{1 2 2 J
Q.4 it a parabola to the given points (z,y) by the method of least squares. (5]




Q.5 Find a particular solution of the following system of differential equations using method of
diagonalization, given that 4 (0) = 3 and y2(0) = 1. 6]
no= 4y
yh = 4dy1+2- 16¢°
R
Q.6 Find the characteristic and minimal polynomials of the matrix | 1 1 1 |. 4]
1 1 1
Q.7 Suppose the characteristic and minimal polynomials of an operator T are
ch(T) = (A = 3)4(X — 1)® and m(T) = (A - 3)*(\ — 1)3 respectively. Determine all possible
Jordan canonical forms of 7. [4]
Q.8 (a) Let V be a vector space over a field K and T": V — V be a linear operator on V'. Let
W be the set of all fixed points of T i.e. W ={z € V : T(z) = z}. Show that W is a
subspace of V. 1]
(b) Let V.=Cand K =R. Let B = {1,4} be an ordered basis for C over R. Let T: C — C
be a linear operator whose matrix relative to the pair B, B is A = { 2 ;) } Find a
basis for the set of all fixed points of 7. [3]
Q.9 Let V be a finite dimensional vector space over a field K and T : V' — V be a linear operator
on V. Let A = [T]p_.p be the matrix of 7" relative to some ordered basis B of V. Then we
define the determinant of 7" as det(7) = det(A).
Now, let V' be the vector space of all real valued functions defined on R having an ordered
basis B = {sint,cost}. Find the determinant of the differential operator D : V — V defined
by D(f(t)) = &. [4]
Q.10 Let S? denote the vector space of all 3 x 3 real symmetric matrices. Assume that < P,Q >=
tr(PQ) is an inner product on S (Recall that tr(A4) = trace of a square matrix A,y is the
sum of its diagonal entries= ai; + - + any).
1 01 1 01
LetP=]10 1 0land@Q=]0 2 0
1 00 100
Find an orthonormal basis for the subspace Span(P, Q) of S3. [6]
Q.11 Let V be a finite dimensional vector space and 7' a linear operator on V. Suppose that
rank(7?) = rank(7T). Prove that range(T) N nullspace(T) = {0}. [4]
Q.12 State and prove rank-nullity theorem for linear transformations.
OR
State and prove Cauchy-Schwartz inequality. 6]
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