

COLLEGE OF ENGINEERING, PUNE

(An Autonomous Institute of Government of Maharashtra.)
SHIVAJI NAGAR, PUNE - 411 005

END Semester Examination

CE-14001- (CE(DE)-14010)Matrix Analysis of Structures

Course: B.Tech

Branch: Civil Engineering

Semester: Sem VII

Year: 2014-2015

Max.Marks:60

Date:28311010 NOV 2014

Duration: 3 Hours

Time:- 2 pm -5 pm

Instructions:

tions: MIS No.

- 1. Figures to the right indicate the full marks.
- 2. Mobile phones and programmable calculators are strictly prohibited.
- 3. Writing anything on question paper is not allowed.
- 4. Exchange/Sharing of anything like stationery, calculator is not allowed.
- 5. Assume suitable data if necessary.
- 6. Write your MIS Number on Question Paper
- (Q1) Determine the forces in all the members of the plane truss shown in figure, if the vertical member is too short by 4 mm and the other members are too long by 3 mm. Take cross-sectional area = 6400 mm^2 and E = 200 GPa for all members.

[12]

Figure: Problem 1

(Q2) For the beam shown in figure obtain the reactions at all the supports if the middle support sinks by 2 mm. EI is constant. E= 200 GPa, I = 30390.8 cm⁴.

[12]

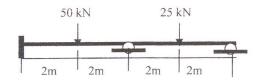
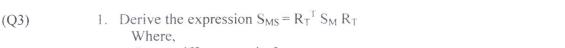



Figure: Problem 2

 S_{MS} = stiffness matrix for structure axes

 S_M = stiffness matrix for local axes

 R_T = Rotation Transformation matrix

2. Write a MATLAB function for obtaining the member stiffness matrix for a rigid [06] jointed plane frame member.

[06]

For the grid shown find the unknown joint displacements and the member forces. [12] (Q4) $EI = 73000 \text{ kN m}^2$ and $GJ = 58000 \text{ kN m}^2$ for all members.

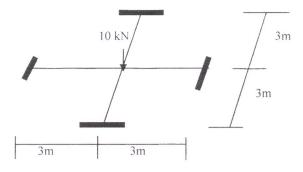


Figure: Problem 4

- 1. Obtain the shape functions for a two node bar member. [06] (Q5)
 - 2. For a space truss member obtain the member stiffness matrix with reference to global [06]