

COLLEGE OF ENGINEERING, PUNE

(An Autonomous Institute of Government of Maharashtra.) SHIVAJI NAGAR, PUNE - 411 005

END Semester Examination

(EE(DE)-14007) C

Control System II

Course: B.Tech		Branch: Electrical Engineering		
Semester: Sen	n VII			
Year:	2014-2015		Max.Marks:60	
Duration: 3 Hou	rs Time:2.00 PM-5.00PM		Date:Nov. 30, 2014	
Instruct questio	ions: Solve all the ns	MIS No.		
, H	3. Writing anything on ques	rammable calculators are strictletion paper is not allowed. thing like stationery, calculator necessary.		
Q. 1 (a)	Given a unity feedback syste	em having open loop transfer func	etion as below:	

$$G(s) = \frac{k}{s(s+1)}$$

06

Design a suitable compensating R-C network in cascade to get PM=45, and steady state error for step input to be less than 1/15

Design a suitable compensator to yield Mp \leq 40% and ts \leq 5 for unity feedback system having open loop transfer function

06

$$G(s) = \frac{10}{s^2 + 2}$$

Q. 2 (a) Design a suitable compensator to get PM=40 degrees and $Kv \le 10$. For the system having following open loop transfer function.

08

$$G(s) = \frac{1}{s^2}$$

(b) Realize the compensator designed in (Q.2a).

04

Q. 3 (a) Design a PID Controller for the system having an open-loop transfer function of

$$G(s) = \frac{1}{(0.1s+1)(0.2s+1)^2}$$

7

06

06

04

Design PI Controller to meet Mp=25% and ts=3 Sec. for the unity feedback plant with open loop transfer function 08

$$G(s) = \frac{k}{s(s+40)}$$

Q. 4 (a) Determine 'a' and 'b' so that the system given below is controllable and observable.

$$\dot{x} = \begin{pmatrix} 0 & a \\ -2 & b \end{pmatrix} x + \begin{pmatrix} 0 \\ 1 \end{pmatrix} u \quad and \quad y = \begin{pmatrix} 1 & 0 \end{pmatrix} x$$

(b) Design a state feedback controller for the system given below to have closed loop poles at -1 and -2. Design necessary observer.

$$\dot{x} = \begin{pmatrix} -1 & 0 \\ 0 & 3 \end{pmatrix} x + \begin{pmatrix} 0 \\ 1 \end{pmatrix} u \quad and \quad y = \begin{pmatrix} 1 & 0 \end{pmatrix} x$$

- Q. 5 (a) What is backlash? How the system performance is affected due to this nonlinearity?
 - (b) Sketch the phase portrait of following systems $(i) \quad \dot{x} = \begin{pmatrix} -8 & 6 \\ 0 & -2 \end{pmatrix} x \quad (ii) \quad \dot{x} = \begin{pmatrix} 4 & -4 \\ 4 & 4 \end{pmatrix} x$
 - (c) Comment on degrees of freedom of PI-D controller.