

COLLEGE OF ENGINEERING, PUNE

(An Autonomous Institute of Government of Maharashtra) SHIVAJI NAGAR, PUNE - 411 005

End Semester Examination IE(ILE) - 14001 Control Systems Instrumentation and Control Engineering

MIS No.

Course: B.Tech Semester: Sem VII Year: 2014-2015

Time: 02.00 Pm - 05.00 Pm

Max. Marks: 60 Date: /11/2014

2 0 NOV 2014

Instructions:

1. All questions carry equal marks.

- 2. Mobile phones and programmable calculators are strictly prohibited.
- 3. Writing anything on question paper is not allowed.
- 4. Exchange/Sharing of anything like stationery, calculator is not allowed.
- 5. Assume suitable data if necessary.
- 6. Write your MIS Number on Question Paper.
- 1. (a) Sketch the root locus for the systems whose open loop transfer functions are given by

$$\frac{k(s-2)}{s(s+1)(s+4)}$$

Show the number branches, termination points, break-in (-away) points (if any), $j\omega$ axis crossings (if any) and angles of departure (arrival) (if any).

- (b) Repeat part (a) if the zero at +2 is shifted to -2.
- (c) What inference about the stability of the system can be made by just looking at the open loop transfer functions given above in part (a) and part (b)?
- (d) Comment on parts (a) and (b).
- 2. Consider the system in Fig. 1 with

$$G(s) = \frac{1}{s^2(s+2)(s+5)}$$

Find the steady state errors to unit step and unit ramp inputs for

(a)

$$G_c(s) = k(1+2s), \ H(s) = 1$$

(b)

$$G_c(s) = k, \ H(s) = (1+2s)$$

Comment on your answers.

Figure 1: Question 2 and question 3

3. Define stability of an open loop and a closed loop system.

Given the system shown in Fig. 1 with

$$G(s) = \frac{1}{s(s+1)(s+4)(s+5)}$$

and

$$G_c(s) = k, \ H(s) = 1$$

Find the range of k for stability. Repeat the problem with $G_c(s) = k(s+a)$ where a is a positive constant. Comment on your answers.

- 4. (a) What do you understand by the term frequency response?
 - (b) Sketch the polar plot of in the frequency range of $-\infty < \omega < \infty$

$$G(s) = \frac{1}{s^2(s+4)(s+2)}$$

(c) Sketch the polar plot of

$$G(s) = \frac{(s-1)}{(s^2+1)(s+4)}$$