

COLLEGE OF ENGINEERING, PUNE

(An Autonomous Institute of Government of Maharashtra) SHIVAJI NAGAR, PUNE - 411 005

End Semester Examination IE(DE) - 14003 Digital Control Instrumentation and Control Engineering

Course: B.Tech

Semester: Sem VII

Year: 2014-2015

Time: 2 to 5 p.m.

2 8 NOV 2014

MIS No. _

400 40 4

Max. Marks: 60

Date: /11/2014

Instructions:

1. All questions carry equal marks.

- 2. Mobile phones and programmable calculators are strictly prohibited.
- 3. Writing anything on question paper is not allowed.
- 4. Exchange/Sharing of anything like stationery, calculator is not allowed.
- 5. Assume suitable data if necessary.
- 6. Write your MIS Number on Question Paper.
- 1. (a) Find the z transform and modified z transform of c(t) if

$$C(s) = \frac{k(s+1)}{(s+2)(s+4)}$$

from the first principles.

- (b) Explain what additional information is obtained from the modified z- transform.
- 2. (a) State the conditions for stability on the roots of the characteristic equation for a continuous system and a discrete system.
 - (b) Given a unity feedback system with

$$G_{ho}G(z) = \frac{kz}{(z+1)(z+0.4)(z-0.4)}$$

find the range of k for stability using the transformation

$$w = \frac{z - 1}{z + 1}$$

3. (a) Briefly describe one method for discretization design.

(b) For a certain system, the continuous compensator

$$D(s) = \frac{1 + 0.04s}{1 + 0.01s}$$

is to be discretized. Find D(z) for sampling periods of T = 1, 0.1 and 0.01 sec. Comment on the implementation difficulties with reference to some digital hardware you are familiar with.

- 4. (a) What advantages if any can the δ operator give over the shift operator.
 - (b) Given

$$\begin{aligned} x_1(k+1) &= x_2(k) \\ x_2(k+1) &= x_3(k) \\ x_3(k+1) &= x_4(k) \\ x_4(k+1) &= x_1(k) - 2x_2(k) + 3x_4(k) + 2u(k) \\ y(k) &= x_1(k) \end{aligned}$$

Design a state feedback so that the closed loop poles will be at -0.1, -0.4 and 0.2. Derive the open loop and closed loop transfer functions in z- plane.

- 5. Write short notes on:
 - (a) w transform
 - (b) Frequency domain representation of z transform
 - (c) δ transform
 - (d) Direct digital design