

COLLEGE OF ENGINEERING, PUNE

(An Autonomous Institute of Government of Maharashtra.) SHIVAJI NAGAR, PUNE - 411 005

END Semester Examination

(ME-DE-14001)

Computational Fluid Dynamics and Heat Transfer

Course: B.Tech Branch: Med	urse: B.Tech Branch: Mechanical Engineering			
Semester: Sem VII				
Year: 2014-2015	2 0 1101/201/	Max.Marks:60		
Duration: 3 Hours Time:- 2 to 5 pm.	2 8 NOV 2014	Date: /11/2014		
Instructions: MIS No				

- 1. Figures to the right indicate the full marks.
- 2. Mobile phones and programmable calculators are strictly prohibited.
- 3. Writing anything on question paper is not allowed.
- 4. Exchange/Sharing of anything like stationery, calculator is not allowed.
- 5. Assume suitable data if necessary.
- 6. Write your MIS Number on Question Paper.
- 7. Solve any **six** questions.

Q. 1	A.	For a simple geometry problem on a staggered grid system, derive equations for prediction of velocity and mass-fluxes using Semi-Explicit method with complete expressions for advection and diffusion.	[10]
Q. 2	Α.	Consider 2-D unsteady state pure conduction equation. For explicit finite volume discretization method with uniform grid size $\Delta x = \Delta y$, determine the coefficient of the linear algebraic equation $a_P T_P^{n+1} = a_E T_E^n + a_W T_W^n + a_N T_N^n + a_S T_S^n + b$ for a representative interior cell	[6]
	В.	Write a Taylor's series expression. For a rectangular grid form state the expressions for single order Forward, Backword and Central difference PDE's.	[4]
Q. 3	A.	Consider a square steel plate having thermal conductivity 63.9 W/m-K maintained left wall at 100°C, bottom wall insulated, right wall with 10 kW/m² constant heat generation and top wall with convective heat transfer, having coefficient of convective heat transfer 10 W/m²-K. Write down the finite volume discretized form of equation and boundary conditions for steady state heat conduction. Consider the 6 x 6 cells. Determine the temperature distribution for at least 3 iterations and an initial condition of 50°C. Present your result for T _{j,i} in tabular form.	[10]
Q. 4	Α.	Consider a problem of heat transfer in a square plate with circular hole. Discuss the various types of elliptic grids for this problem	[10]

		with the help of figures for physical as well as computational domain. Show branch cut in the physical domain for the different types of grids.	
Q. 5	A.	What do you mean by advection scheme? Explain any four advection schemes for 2-D simple geometry problem.	[1
Q. 6	A.	Derive an expression for ϕ_w as a function of cell center values using QUICK convection scheme for the flow in the negative x-direction on the west face with a non-uniform grid structure as shown in fig. $ \Delta X \qquad 2\Delta X \qquad 3\Delta X $	[1
Q. 7	Α.	Define the terms consistency, convergence and stability in FDM. [Explain with suitable example the difference between explicit and implicit approach.	[6
	В.	Differentiate between the simple domain and complex domain with examples.	[4