Optics and Modern Physics

F.Y.B.Tech. (Semester I)

Course code: PH-19001 (OMP)

Teaching Plan

Examination Scheme

Teaching Scheme

Lectures: 3hrs/week Test1: 20 & Test2: 20 marks

Practical: 2hrs/week End-Sem Exam- 60

Unit. No.	Lecture	Topic to be covered
1	1	Introduction Interference,
Interference and		Interference due to thin films of uniform thickness
Diffraction	2	Interference due to thin films of non-uniform thickness
[7 Hrs]		Wedge shaped thin film
		conditions of minima maxima
	3	Properties of Wedge-shaped thin film
		• Numericals
	4	Newton's rings
		Applications of Newton's ring
		Anti Reflection Coating
		Numericals
	5	Fraunhoffer diffraction at a single slit
		Intensity expression with Phasor diagram
		condition of maxima and minima
	6	Plane diffraction grating
		condition of maxima and minima
	7	Applications based on diffraction
		Numericals
2	1	Introduction to Polarization of light
Polarization		Types of Polarization and their representation
[7 Hrs]	2	Mathematical representation
		Numericals
	3	Polarization by selective absorption: dichroism,
		• polaroids (H and K)
		Polarization by double refraction
	4	Nicol prism
		• Production and Detection of elliptical and circular
		polarization
	5	• Quarter wave plate (QWP) and Half wave plate (HWP)
		• Numericals
	6	Optical Activity
		Specific Rotation

		Fresnel's theory of optical rotation,
	7	• •
	/	Analysis of Polarized light
		Numericals
3	1	Introduction to laser
	1	
Laser Physics		Laser and ordinary lightLaser beam characteristics
[7 Hrs]		NT . 1
	2	
	2	Spontaneous and stimulated emission of radiations Thormal aguilibrium
		Thermal equilibriumCondition for Light amplification
	3	D
		1 2 1
		Population inversionPumping (Three level and four level pumping)
	4	
	7	Optical resonatorRuby laser
	5	TT NI T
		MINACI
	6	
	0	Semiconductor Laser Numericals
	7	
	/	• Engineering applications of Laser (Fiber entire Lager material interaction)
		(Fiber optics, Laser material interaction)
4	1	Introduction to Matter waves,
Wave	_	 De-Broglie's concept of matter waves
Mechanics		 Properties of matter waves
TVICCITATIVES		Numericals
	2	Concept of Wave packet
		Group and Phase velocity
		Numericals
	3	Heisenberg's uncertainty principle,
		Electron diffraction experiment
		Numericals
	4	Physical significance of wave function
	-	Conditions of well behaved wave function
		Probability Density
		Normalization of wave function
		Numericals
	5	Schrödinger's time dependent and time independent
	_	equations
	6	Operators
		Eigen values and Eigen functions
		Numericals
		Numericals

	7	Expectation values
		Numericals
5	1	• Applications of Schrödinger's equation: Motion of a free
Electrons in		particle
Potential Well	2	• Electron in an infinite deep potential well (rigid box) -1
	3	• Electron in an infinite deep potential well (rigid box) -2
	4	• Electron in a finite deep potential well (non-rigid box)
	5	Numericals based on infinite and finite potential well
	6	Concept of quantum tunneling
	7	Linear Harmonic oscillator
		Numericals
6	1	Introduction to ultrasonic waves
Ultrasonics		 Properties of ultrasonic waves
		Numericals
	2	• Generation of ultrasonic waves: Magnetostriction
		Oscillator
		Numericals
	3	Generation of ultrasonic waves: Piezoelectric Oscillator
		Numericals
	4	Ultrasound transmission modes
		Ultrasound imaging and Instrumentation
	5	Phonocardiograph
	6	Echo ophthalmoscope
	7	Ultrasound blood flow meter
		Numericals

References:

- 1. Fundamentals of Optics, Francis A. Jenkins and Harvey E. White; Mc-Graw Hill International Edition.
- 2. A text book of Engineering physics, Avadhanulu and Kshirsagar, S. Chand Pub.
- 3. A Text Book of Optics, N. Subramanyam & Brijlal; (Vikas Publishing House Pvt. Ltd).
- 4. LASERS Theory and Applications, K. Thyagarajan, A. K. Ghatak; Macmillan India Ltd.
- 5. Concepts of Modern Physics, Arthur Beiser; Tata McGraw Hill Edition.
- 6. Modern Physics, Jeremy Bernstein, Paul M. Fish bane, Stephen Gasiorowics; Pearson Education.
- 7. Quantum Mechanics, L. J. Schiff; Mc-Graw Hill International Edition.
- 8. PHYSICS (Volume I & II), Resnick Halliday and Krane; Willey India 5th Edition.

Course Outcomes:

Student will be able to:

- Analyze the intensity variation of light due to interference, diffraction and polarization.
- They will be able to implement these phenomena to design advanced optical instruments.
- ➤ Understand the principle, construction and working of lasers in order to implement Laser Technology in engineering field.
- > Understand fundamentals of quantum mechanics and apply to one dimensional motion of particles.
- ➤ Understand the principle, production and transmission of ultrasonic waves and understand the working of various instruments based on ultrasonic.

PUNE-411 005.

Head

Physics Department