

COLLEGE OF ENGINEERING, PUNE

(An Autonomous Institute of Government of Maharashtra.) SHIVAJI NAGAR, PUNE - 411 005

END Semester Examination

LIND Semester Lyammation	
(IE-203) Analog Techniques	
ourse: B.Tech Branch: Instrumentation and Control Er	ngineering
emester: Sem III	
ear: 2014-2015	Max.Marks:60
uration: 3 Hours Time:- 10 to 1 p. M	3 at 19: NOV 2014
Instructions: MIS No.	
 Figures to the right indicate the full marks. Mobile phones and programmable calculators are strictly prohib Writing anything on question paper is not allowed. Exchange/Sharing of anything like stationery, calculator is not a Assume suitable data if necessary. Write your MIS Number on Question Paper 	
Q.1 A) A silicon transistor with V _{BEsat} = 0.8V, h _{FE} = 100, V _{CE} used in the circuit shown. Find the minimum value of I the transistor remains in saturation.	
200K & RC	

- B) What is the specialty of differential amplifier? Where do you need [6] differential amplifier? Justify its operation and derive the output voltage expression.
- Q.2
- A) Compare SCR and MOSFET. How willyou reduce component size [6] of the converter? Why switching losses are important in dc-dc converter?
- B) Where do you need buck-boost converter? How is it different from [6] other converters? Also derive the expression for output voltage and draw its typical circuit diagram.

- Q.3 Derive expression for A_I, A_V, A_{IS}, A_{VS} and Z_I for CE transistor using A)
 - [6]
- B) How will you generate square waveform using Op-AMP, suggest a suitable circuit scheme and justify its operation. Also draw the waveform associated with it.

Q.4

A) Design the regulated power supply for the following specifications: Input Voltage: 230 V, 1 Phase AC Supply

[6]

[6]

Output Voltage: 12 Voltage

Output Current: 1 A

h parameter model.

B) Calculate the overall gain for the instrumentation amplifier. Also [6] determine the current and voltage levels throughout the circuit when a + 1 V common mode input is present along the +/- 10 mV signals.

- Q.5
- Α DC to DC converter has to design to provide output voltage of 60 [6] volts and output current 20 A. The input to the converter is 110 V. The switching frequency is 25 KHz. The peak to peak 2.5 % ripple for output voltage. Inductor ripple is 10% of load current. Determine value of L and C. Also determine input current and duty cycle.
- B Design relaxation oscillator using UJT if $V_{BB} = 12$ volts, R = 20 K Ω , [6] C = 1uF, R_{B1} = 10K Ω , R_{B2} = 5K Ω , I_P = 100uA, V_V = 1 Volts and I_V = 5.5 mA. Determine V_P, Rmax, Rmin and frequency.