College of Engineering, Pune-5

(An autonomous institute of government of Maharashtra)

End Semester Examination

(Code: CT355) Computer Algorithm in Signal Processing

Programme: T.Y. B.Tech. (Computer Engineering)

Year: 2012-13 Duration: 3 Hrs

Date: 30/11/2012

[Max. Marks: 50]

Instructions to candidates:

- 1) Question No. 5 is Compulsory. Out of remaining five, solve only four
- 2) Only first five questions will be evaluated.
- 3) When one question is attempted solve all the sub-questions serially.
- 4) Assume suitable data, if necessary.
- 5) Figures to the right indicate full marks.
- 6) Use of logarithmic tables, mollier charts, non-programmable electronic calculators and steam tables are allowed.
- Q.1 A Find the inverse DTFT of $X(\omega)$ shown in figure below

Write a difference equation to implement the system with a frequency response

H(
$$\omega$$
) = $\frac{1 - 0.5e^{-j\omega} + e^{-3j\omega}}{1 + 0.5e^{-j\omega} + 0.75e^{-2j\omega}}$

Consider the eight point periodic sequence

3 marks

- X(n) = (1,3,4,5,6,5,4,3)
 - 1) Is the sequence even symmetric
 - 2) Find out $x(n-3) \mod 8$
 - 3) Find out $x(n-5) \mod 8$
 - 4) Find out time reversal of sequence x(n)
- Given $x(n) = \{0,1,2,3\}$. Find X(k) using DIT FFT algorithm. Draw the flowgraph clearly and write down the values at intermediate stages

4 matks

Let G[k] and H[k] denote the 7 point DFTs of two sequences g(n) and h(n),

4 mark

College of Engineering, Pune

-1-

NOV 2012

 $0 \le n \le 6$, respectively. If $G[K] = \{1+j2, -2+j3, -1-j2, 0, 8+j4, -3+j, 2+j5\}$.

 $h(n) = g((n-3)_7)$.

Determine H[K] without calculating IDFT of G[k], i.e g(n).

C The Z transform of a sequence x(n) is given as

2 mark

$$X(z) = \frac{Z + 2Z^{-2} + Z^{-3}}{1 - 3Z^{-4} + Z^{-5}}$$

If the region of convergence include the unit circle, find the DTFT of x(n) at $\omega = \Pi$.

Q.3 A Consider the sequence

 $X(n) = \delta(n) + 2 \delta(n-2) + \delta(n-3)$

4 mark

- X(n) O(n) + 2 O(n-2) + O(n-3)
- Find the four point DFT of x(n)
 Let y(n) is the four point circular convolution of x(n) with itself, find Y(K) first and hence find out y(n)

B

03 marks

3-1: Pole-Zero Diagram

For the pole zero plot above answer the following question. Justify your answer with at most two statements.

- A) If ROC is |Z| > 2
 - 1) Is the system stable?
 - 2) Is the system causal?
- B) If ROC |z| < 2
 - 1) Is the system stable?
 - 2) Is the system causal?
- C A signal X_a(t) is band limited to 10 Khz is sampled with a sampling frequency 3mark of 20 Khz. The DFT of N=1000 samples of x(n) is then Computed
 - 1) What is the Spectral spacing between the spectral samples?
 - 2) To What analog frequency does the index K=150 corresponds?
 - 3) To What analog frequency does the index K=800 corresponds?
- Q.4 A The linear time invariant system is characterized by the system function

3 marks

$$H(Z) = \frac{3 - 4z^{-1}}{1 - 3.5z^{-1} + 1.5z^{-2}}$$

Specify the ROC of H(Z) and determine h(n) for the following conditions.

- 1) The system is stable
- 2) The system is causal
- 3) The system is purely anticausal
- B Find the linear convolution through circular convolution of x(n) and y(n). 2 mark

$$x(n) = \delta(n) + \delta(n-1) + \delta(n-2)$$

 $y(n) = 2\delta(n) - \delta(n-1) + 2\delta(n-2)$

C Consider the LTI system which is stable and for which H(Z), the Z transform of the impulse response is given by

$$H(Z) = \frac{3 - 7z^{-1} + 5z^{-2}}{1 - 2.5 z^{-1} + Z^{-2}}$$

Suppose X(n), the input to the system is a unit step sequence. Determine the output

Q.5 A Select proper option

3 mark

- 1) Which type of filter gives linear phase
 - a) FIR filter
 - b) IIR filter
 - c) both FIR and IIR
 - d) depends on design
- 2) In filter design windowing technique, increasing the length of window function, ------the width of main lobe, which in turn------ transition width
 - a) Increases, increases
 - b) Increases, decreases
 - c) Decreases, increases
 - d) Decreases, Decreases

Increasing the length of filter, ----- number of ripples in the passband

- 3) and stopband
 - a) Increases
 - b) Decreases
 - c) Does not change
 - d) Can't predict

The impulse response of ideal low pass filter is ------

- 4) a) causal and infinite
 - b) Noncausal and Finite
 - c) Noncausal and infinite
 - d) bidirectional and infinite

The following Pole zero diagram corresponds to

5)

- a) High pass filter
- b) Bandpass filter
- c) Bandstop filter
- d) Low pass filter
- Which type of filters are stable
 - a) FIR
 - b) IIR
 - c) Both
 - d) Can not predict
- B The desired response of a low-pass filter is $H_d(\omega) = e^{-j2\omega}$, $-\Pi/4 <= \omega <= \Pi/4$ =0 , $\Pi/4 < \omega <= \Pi$

5 mark

Design FIR filter to meet above response with hamming window function Of length seven.

Use following formula for Hamming window

$$W(n)=0.54-0.46\cos 2 \Pi n/M-1 0 <= n <= M-1$$

= 0 otherwise

C What is Gibb's phenomenon? How it is alleviated

2 mark

Q.6 A Compare FIR and IIR filter. In which applications one type will be preferred over the other?

3mark

B What are the requirements of a Digital Signal Processor? How DSP processor differs from Microprocessor

3 marks

C Determine the direct form I and II realization for a third transfer function

4 marks

$$H(Z) = \frac{0.28Z^2 + 0.319Z + 0.04}{0.5z^3 + 0.3Z^2 + 0.17Z - 0.2}$$

------GOOD LUCK-----