Elect

College of Engineering, Pune End Semester Exam – November 2012

T. Y. B. Tech. (Electrical) (EE 351)- (Electrical Machines II)

Day & Date- Wednesday , 28^{th} November 2012. Maximum Marks: 50

Duration - 3hrs.

Instructions:

- 1. All questions are compulsory.
- 2. Figures to the right indicate full marks.

3.	Assume suitable data, if necessary and state clearly the same. Use of Programmable pocket electronic calculators use is allowed.			
Q1 -	A	A 3-phase, 50 Hz induction motor is running at a speed of 728 rpm. Determine the number of poles, frequency of rotor emf and speed of rotor mmf in radians/sec relative to stator.	Marks 5	
	В	A 22.5kW, 500V, 4 pole, 50 Hz, delta connected squirrel cage induction motor has following data: $r_1 = r_2'$ No load test: 500V, 8.3A, 1.5kW. s.c test: 100V, 32A, 1.6kW. Draw the circle diagram from which obtain the following for full load	5	
		conditions:- (i) Line current; (ii) Power factor; and (iii) Efficiency. Determine the maximum torque developed by the motor in N-m.		
Q2	A	State the different methods of speed control of 3-phase induction motor. Explain the method using emf injection in the rotor circuit of the motor. State clearly the assumptions made and draw the phasor diagram.	5	
	В	The normal full load slip and shaft torque of a 375kW, 50Hz, 3 phase induction motor are 1.9% and 9450 N-m respectively. The standstill value of rotor impedance is $(0.25 + j1.5)\Omega/ph$. Estimate the speed and power output for full load stator current when a resistor of $2\Omega/ph$ is inserted in the rotor circuit.	5	
Q3	A	Derive an expression for the power output of a 3-phase, salient pole generator in terms of excitation emf/ph, terminal voltage, x_d , x_q and δ . Draw the phasor diagram and P- δ characteristic for a $\frac{x_q}{x_d}$ ratio of 0.7.	4	

	В	A salient pole synchronous motor has $x_d = 0.8$ pu and $x_q = 0.5$ pu. It is running from an infinite bus of $V_{\infty} = 1$ pu. Neglect all losses. What is the minimum p.u. excitation for which the machine will stay in synchronism with full load torque?	3
	C	A round rotor synchronous generator has $L_{aa} = 2.65 \text{mH}$ and $L_{al} = 0.255 \text{mH}$. Calculate the mutual inductance between any two phases and the machine synchronous reactance at 50Hz.	3
Q4	A	A 20MVA, 11kV, 3-phase, delta connected synchronous motor has a synchronous reactance of 15 Ω /phase and armature resistance is negligible. Windage, friction and iron losses total to 1200kW. Determine the current drawn by the motor at upf for a shaft load of 15MW and the excitation emf under these conditions.	4
	В	Explain the operating principle and torque-speed characteristics of the following single phase motors:-	
		a) Shaded pole motor; andb) Two value capacitor motor.	3
O5		With reasons, establish the correctness of following statements:-	
Q.		a) The rotor mmf of a 3-phase induction motor rotates in space at the	*
		same speed of stator mmf.	2
		b) Third harmonic currents flowing in the windings of a 3-phase alternator produce a stationary field in space.	2
		c) Short pitched windings in a ac machines save copper, reduce emf	_
		induced in the windings and mitigate lower order harmonics. d) The starting torque of a 3-phase induction motor depends upon the	2
		value of rotor resistance.	2
		e) An over-excited synchronous motor is used for pf correction.	2
