FUNE

F.Y.M. Tech (microtronics.)

COLLEGE OF ENGINEERING, PUNE

(An Autonomous Institute of Government of Maharashtra.) SHIVAJI NAGAR, PUNE - 411 005

END Semester Examination

- Advanced Control Systems - MX-519

Y	0	2	r	•

2014-2015

Max.Marks:60

Duration: 3 Hours Time:- 2.00pm to 5.00pm

Date: 26th Nov 2014

Instructions:

MIS No.

- 1. Figures to the right indicate the full marks.
- 2. Mobile phones and programmable calculators are strictly prohibited.
- 3. Writing anything on question paper is not allowed.
- 4. Exchange/Sharing of anything like stationery, calculator is not allowed.
- 5. Assume suitable data if necessary.
- 6. Write your Seat Number on Question Paper

Q1. Any Five

(20)

- 1. Justify 'Describing function is also called as Harmonic linearization of nonlinearities'.
- 2. Find transfer function for control system with state model defined by

$$A = \begin{bmatrix} -2 & -2 \\ 0 & -1 \end{bmatrix} B = \begin{bmatrix} 3 \\ 1 \end{bmatrix} C = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

- 3. Explain reduced order observer.
- 4. Explain limit cycles and their significance.
- 5. Write short note on state regulator problem for optimal control system design.
- 6. For given pole-zero plot, identify singular point and draw approximate phase trajectory. Comment on stability.

b.

Q2. Any Five

(40)

1. Design state feedback control for a system to have poles at $s = -2 \pm j4$ and -10. The system is defined by -

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -1 & -5 & -6 \end{bmatrix} \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

2. Design full state observer such that observer poles are at -20, -10.

$$\dot{x}1 = -4x1 + x2$$

$$\dot{x}2 = -5x1 + x2$$

$$y = x1$$

3. Derive expression for Lyapunov's second method and explain how it can be applied to investigate stability of linear as well as non-linear systems.

4. A linear second order servo is described by the equation –

$$\ddot{y} + 2\xi\omega n \ \dot{y} + \omega n^2 \ y = \omega n^2$$
 where $\omega n = 1$, $y(0) = 2.0$, $\dot{y}(0) = 0$

Determine the singular points when $\xi = 0.15$. Construct phase trajectory.

5. For system given below find all equilibrium points and determine type of each isolated equilibrium points.

a.
$$\dot{x}1 = x1^3 + x2$$
; $\dot{x}2 = x1 - x1^3$

b.
$$\dot{x}1 = x1(2 - x2)$$
; $\dot{x}2 = 2x1^2 - x2$

6. Explain minimization of functions in optimal control system.
