Solid State Physics and Statistical Thermodynamics F.Y.B.Tech. (M-group) Semester II Course code: PH-19005 (SSPST)

Teaching Plan

Teaching Scheme

Examination Scheme

Lectures : 3hrs/week Practical : 2hrs/week Test 1 & 2 : 40 marks End-Sem Exam - 60.

Unit	Lecture	Topic to be covered
1 Structure of Solids and its Characterization	1 2	 Crystalline state Concept of Lattice Concept of Space lattice Numericals Basis and crystal structure Unit cell
	3	 Primitive cell Numericals Lattice parameters Crystal systems in brief
	4	 Numericals Miller indices Inter planer distance of lattice plane Numericals
	5	 Linear density Planar density Density of crystals Numericals
	6	X-ray diffraction:Bragg spectrometerNumericals
	7	Analysis of XRD spectra for cubic systemNumericals
2 Solid State Physics	1	• Somerfield's free electron theory
	2	 Density of states 1Dimentional 2 Dimensional 3Dimentional
	3	• Nearly free electron theory

	4	• Origin of band gap
		Magnitude of band gap
	5	• Classification of solids on the basis of band theory
	6	• Fermi energy level
		Electron distribution function
		• Fermi-Dirac probability function
	7	• Position of Fermi level in intrinsic (with derivation),
	8	Carrier concentration
		-Intrinsic semiconductor
		-Extrinsic semiconductor
	9	Intrinsic semiconductor conductivity
		Extrinsic semiconductor conductivity
	10	Numericals (Practice)
Unit 3	1	Micro and macro states
Statistical	2	Basic postulate of statistical mechanics
Thermodynamics		Concept and types of ensembles
	3	Partition function
		Numericals
	4	Classification of statistical distribution function
	5	 Corollary of first law of thermodynamics
		 Second law of thermodynamics
		• Third law of thermodynamics
	(Numericals
	0	• Statistical interpretation of basis thermodynamic
		variables
		• Pressure, work
		• Numericals
	7	Statistical interpretation of basis thermodynamic
		variables
		• Energy, entropy
		• Numericals
	8	• Helmholtz free energy
		• Gibb's free energy
		• Numericals

4	1	Introduction
Thermal		Thermal vibrations
properties of	2	• Specific heat of solids
solids		• Dulong Petit law
	2	Numericals
	3	• Einstein's theory of specific heat
		• Numericals
	4	• Debye's theory of specific heat: vibrational modes
		• Numericals
	5	• Density of vibrational mode, Debye's approximation
		Numericals
5	1	 Introduction to magnetic materials
5	1	 Diamagnetic
Magnetism		Paramagnetic
		• Ferromagnetic
		• Antiferromagnetic
		• Ferrimagnetic
	2	• Types of magnetic interactions
		Concept of magnetoresistance
	3	Curie law in paramagnetism (using statistical
		partition function)
		Numericals
	4	• Ferrites: types and structures
	5	Application: magnetic storages
	6	• Vibrating sample magnetometer (VSM).
	1	
Unit 6	1	Introduction to superconductivity
Superconductivity	2	Properties of superconductor
	3	•
		• Type-I and Type-II superconductors
	4	Concept of cooper pair
	5	AC/DC Josephson effect SQUID magnetometer:
		principle and working
	6	Numericals

References:

- 1. Elements of X-ray Diffraction, B. D. Cullity, Addison-Wesley Publishing Company, Inc.
- 2. Introduction to Solid State Physics, Charles Kittel, Wiley.
- 3. Solid State Physics, S. O. Pillai, New Age International Publishers.
- 4. Solid state electronic devices, Ben G. Streetman, Sanjay Banerjee Pearson Prentice-Hall.
- 5. Fundamentals of statistical Mechanics, B. B. Laud, New Age International Publishers
- 6. Fundamentals of Statistical and Thermal Physics by F. Reif, Levant Pub.
- 7. Statistical Mechanics, Shang-Keng Ma.
- 8. Text Book of Engineering Physics by Avadhanulu & Kshirsagar, S. Chand Pub.
- 9. Introduction to Magnetic Materials, B. D. Cullity, Wiley.
- 10. Introduction to Magnetism and Magnetic Materials, David Jiles, Springer-Science.

Objectives:

Students are expected to understand

- > Different types of structure of solids and its characterization by x-ray technique.
- Band structure of solids, categorization of solids based on band structure, ideas about Fermi level positions in semiconductors.
- Foundation of statistical mechanics, basic concepts and various terms and formulations.
- > The connection between statistics and thermodynamics, understanding thermodynamics by statistical point of view and its techniques.
- Thermal properties of solids, specifically, specific heat and some models for specific heat calculation.
- Origin of magnetism, various types of magnetic materials and its use in modern technology.

Head Physics Department